Archive for the pictures Category

marriage with data

Posted in Kids, pictures, Travel with tags , , , , on August 1, 2014 by xi'an

marriage

Bangalore snapshot [ಬೆಂಗಳೂರು ಚಿತ್ರ]

Posted in pictures, Travel with tags , , , , , on August 1, 2014 by xi'an

police

missing slide

Posted in pictures, Statistics, Travel, University life with tags , , on July 31, 2014 by xi'an

I realised too late I should have added this slide to my talk in Bangalore, to thank the Indian participants and organisers of the IFCAM workshop:

நன்றி    ಧನ್ಯವಾದ   ਤੁਹਾਡਾ ਧੰਨਵਾਦ

धन्यवाद  આભાર  আপনাকে   ধন্যবাদ

अनुगुरिहीतोसुमि ధన్యవాదాలు  آپ کا شکریہ

Bangalore workshop [ಬೆಂಗಳೂರು ಕಾರ್ಯಾಗಾರ]

Posted in pictures, R, Running, Statistics, Travel, University life, Wines with tags , , , , , , on July 31, 2014 by xi'an

mathdeptSecond day at the Indo-French Centre for Applied Mathematics and the workshop. Maybe not the most exciting day in terms of talks (as I missed the first two plenary sessions by (a) oversleeping and (b) running across the campus!). However I had a neat talk with another conference participant that led to [what I think are] interesting questions… (And a very good meal in a local restaurant as the guest house had not booked me for dinner!)

To wit: given a target like

\lambda \exp(-\lambda) \prod_{i=1}^n \dfrac{1-\exp(-\lambda y_i)}{\lambda}\quad (*)

the simulation of λ can be demarginalised into the simulation of

\pi (\lambda,\mathbf{z})\propto \lambda \exp(-\lambda) \prod_{i=1}^n \exp(-\lambda z_i) \mathbb{I}(z_i\le y_i)

where z is a latent (and artificial) variable. This means a Gibbs sampler simulating λ given z and z given λ can produce an outcome from the target (*). Interestingly, another completion is to consider that the zi‘s are U(0,yi) and to see the quantity

\pi(\lambda,\mathbf{z}) \propto \lambda \exp(-\lambda) \prod_{i=1}^n \exp(-\lambda z_i) \mathbb{I}(z_i\le y_i)

as an unbiased estimator of the target. What’s quite intriguing is that the quantity remains the same but with different motivations: (a) demarginalisation versus unbiasedness and (b) zi ∼ Exp(λ) versus zi ∼ U(0,yi). The stationary is the same, as shown by the graph below, the core distributions are [formally] the same, … but the reasoning deeply differs.

twoversions

Obviously, since unbiased estimators of the likelihood can be justified by auxiliary variable arguments, this is not in fine a big surprise. Still, I had not thought of the analogy between demarginalisation and unbiased likelihood estimation previously. Continue reading

Bangalore workshop [ಬೆಂಗಳೂರು ಕಾರ್ಯಾಗಾರ]

Posted in pictures, Running, Statistics, Travel, University life, Wines with tags , , , , , on July 30, 2014 by xi'an

iiscFirst day at the Indo-French Centre for Applied Mathematics and the get-together (or speed-dating!) workshop. The campus of the Indian Institute of Science of Bangalore where we all stay is very pleasant with plenty of greenery in the middle of a very busy city. Plus, being at about 1000m means the temperature remains tolerable for me, to the point of letting me run in the morning.Plus, staying in a guest house in the campus also means genuine and enjoyable south Indian food.

The workshop is a mix of statisticians and of mathematicians of neurosciences, from both India and France, and we are few enough to have a lot of opportunities for discussion and potential joint projects. I gave the first talk this morning (hence a fairly short run!) on ABC model choice with random forests and, given the mixed audience, may have launched too quickly into the technicalities of the forests. Even though I think I kept the statisticians on-board for most of the talk. While the mathematical biology talks mostly went over my head (esp. when I could not resist dozing!), I enjoyed the presentation of Francis Bach of a fast stochastic gradient algorithm, where the stochastic average is only updated one term at a time, for apparently much faster convergence results. This is related with a joint work with Éric Moulines that both Éric and Francis presented in the past month. And makes me wonder at the intuition behind the major speed-up. Shrinkage to the mean maybe?

Follow

Get every new post delivered to your Inbox.

Join 604 other followers