## Le Monde puzzle [38]

Posted in R, University life with tags , , , on September 30, 2010 by xi'an

Since I have resumed my R class, I will restart my resolution of Le Monde mathematical puzzles…as they make good exercises for the class. The puzzle this week is not that exciting:

Find the four non-zero different digits a,b,c,d such that abcd is equal to the sum of all two digit numbers made by picking without replacement two digits from {a,b,c,d}.

The (my) dumb solution is to proceed by enumeration

```for (a in 1:9){
for (b in (1:9)[-a]){
for (c in (1:9)[-c(a,b)]){
for (d in (1:9)[-c(a,b,c)]){
if (231*sum(c(a,b,c,d))==sum(10^(0:3)*c(a,b,c,d)))
print(c(a,b,c,d))
}}}}

taking advantage of the fact that the sum of all two-digit numbers is (30+4-1) times the sum a+b+c+d, but there is certainly a cleverer way to solve the puzzle (even though past experience has shown that this was not always the case!)
Share:ShareClick to email this to a friend (Opens in new window)Share on Facebook (Opens in new window)Click to share on Twitter (Opens in new window)Click to print (Opens in new window)Click to share on StumbleUpon (Opens in new window)Click to share on Reddit (Opens in new window)```