Archive for empirical Bayes methods

Approximate Bayesian model choice

Posted in Books, R, Statistics, Travel, University life with tags , , , , , , , , , on March 17, 2014 by xi'an

The above is the running head of the arXived paper with full title “Implications of  uniformly distributed, empirically informed priors for phylogeographical model selection: A reply to Hickerson et al.” by Oaks, Linkem and Sukuraman. That I (again) read in the plane to Montréal (third one in this series!, and last because I also watched the Japanese psycho-thriller Midsummer’s Equation featuring a physicist turned detective in one of many TV episodes. I just found some common features with The Devotion of Suspect X, only to discover now that the book has been turned into another episode in the series.)

“Here we demonstrate that the approach of Hickerson et al. (2014) is dangerous in the sense that the empirically-derived priors often exclude from consideration the true values of the models’ parameters. On a more fundamental level, we question the value of adopting an empirical Bayesian stance for this model-choice problem, because it can mislead model posterior probabilities, which are inherently measures of belief in the models after prior knowledge is updated by the data.”

This paper actually is a reply to Hickerson et al. (2014, Evolution), which is itself a reply to an earlier paper by Oaks et al. (2013, Evolution). [Warning: I did not check those earlier references!] The authors object to the use of “narrow, empirically informed uniform priors” for the reason reproduced in the above quote. In connection with the msBayes of Huang et al. (2011, BMC Bioinformatics). The discussion is less about ABC used for model choice and posterior probabilities of models and more about the impact of vague priors, Oaks et al. (2013) arguing that this leads to a bias towards models with less parameters, a “statistical issue” in their words, while Hickerson et al. (2014) think this is due to msBayes way of selecting models and their parameters at random.

“…it is difficult to choose a uniformly distributed prior on divergence times that is broad enough to confidently contain the true values of parameters while being narrow enough to avoid spurious support of models with less parameter space.”

So quite an interesting debate that takes us in fine far away from the usual worries about ABC model choice! We are more at the level empirical versus natural Bayes, seen in the literature of the 80’s. (The meaning of empirical Bayes is not that clear in the early pages as the authors seem to involve any method using the data “twice”.) I actually do not remember reading papers about the formal properties of model choice done through classical empirical Bayes techniques. Except the special case of Aitkin’s (1991,2009) integrated likelihood. Which is essentially the analysis performed on the coin toy example (p.7)

“…models with more divergence parameters will be forced to integrate over much greater parameter space, all with equal prior density, and much of it with low likelihood.”

The above argument is an interesting rephrasing of Lindley’s paradox, which I cannot dispute, but of course it does not solve the fundamental issue of how to choose the prior away from vague uniform priors… I also like the quote “the estimated posterior probability of a model is a single value (rather than a distribution) lacking a measure of posterior uncertainty” as this is an issue on which we are currently working. I fully agree with the statement and we think an alternative assessment to posterior probabilities could be more appropriate for model selection in ABC settings (paper soon to come, hopefully!).

séminaire à Laval, Québec

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , on February 24, 2014 by xi'an

On Friday, I am giving a talk on ABC at Université Laval, in the old city of Québec. While on my way to the 14w5125 workshop on scalable Bayesian computation at BIRS, Banff. I have not visited Laval since the late 1980’s (!) even though my last trip to Québec (the city) was in 2009, when François Perron took me there for ice-climbing and skiing after a seminar in Montréal… (This trip, I will not stay long enough in Québec, alas. Keeping my free day-off for another attempt at ice-climbing near Banff.) Here are slides I have used often in the past year, but this may be the last occurrence as we are completing a paper on the topic with my friends from Montpellier.

my week at War[wick]

Posted in pictures, Running, Statistics, Travel, Uncategorized with tags , , , , , , , , , on February 1, 2014 by xi'an

This was a most busy and profitable week in Warwick as, in addition to meeting with local researchers and students on a wide range of questions and projects, giving an extended seminar to MASDOC students, attending as many seminars as humanly possible (!), and preparing a 5k race by running in the Warwickshire countryside (in the dark and in the rain), I received the visits of Kerrie Mengersen, Judith Rousseau and Jean-Michel Marin, with whom I made some progress on papers we are writing together. In particular, Jean-Michel and I wrote the skeleton of a paper we (still) plan to submit to COLT 2014 next week. And Judith, Kerrie and I drafted new if paradoxical aconnections between empirical likelihood and model selection. Jean-Michel and Judith also gave talks at the CRiSM seminar, Jean-Michel presenting the latest developments on the convergence of our AMIS algorithm, Judith summarising several papers on the analysis of empirical Bayes methods in non-parametric settings.

robust Bayesian FDR control with Bayes factors [a reply]

Posted in Statistics, University life with tags , , , , on January 17, 2014 by xi'an

(Following my earlier discussion of his paper, Xiaoquan Wen sent me this detailed reply.)

I think it is appropriate to start my response to your comments by introducing a little bit of the background information on my research interest and the project itself: I consider myself as an applied statistician, not a theorist, and I am interested in developing theoretically sound and computationally efficient methods to solve practical problems. The FDR project originated from a practical application in genomics involving hypothesis testing. The details of this particular application can be found in this published paper, and the simulations in the manuscript are also designed for a similar context. In this application, the null model is trivially defined, however there exist finitely many alternative scenarios for each test. We proposed a Bayesian solution that handles this complex setting quite nicely: in brief, we chose to model each possible alternative scenario parametrically, and by taking advantage of Bayesian model averaging, Bayes factor naturally ended up as our test statistic. We had no problem in demonstrating the resulting Bayes factor is much more powerful than the existing approaches, even accounting for the prior (mis-)modeling for Bayes factors. However, in this genomics application, there are potentially tens of thousands of tests need to be simultaneously performed, and FDR control becomes necessary and challenging. Continue reading

mini Bayesian nonparametrics in Paris

Posted in pictures, Statistics, University life with tags , , , , , on September 10, 2013 by xi'an

Today, I attended a “miniworkshop” on Bayesian nonparametrics in Paris (Université René Descartes, now located in an intensely renovated area near the Grands Moulins de Paris), in connection with one of the ANR research grants that support my research, BANHDITS in the present case. Reflecting incidentally that it was the third Monday in a row that I was at a meeting listening to talks (after Hong Kong and Newcastle)… The talks were as follows

9h30 – 10h15 : Dominique Bontemps/Sébastien Gadat
Bayesian point of view on the Shape Invariant Model
10h15 – 11h : Pierpaolo De Blasi
Posterior consistency of nonparametric location-scale mixtures for multivariate density estimation
11h30 – 12h15 : Jean-Bernard Salomond
General posterior contraction rate Theorem in inverse problems.
12h15 – 13h : Eduard Belitser
On lower bounds for posterior consistency (I)
14h30 – 15h15 : Eduard Belitser
On lower bounds for posterior consistency (II)
15h15 – 16h : Judith Rousseau
Posterior concentration rates for empirical Bayes approaches
16h – 16h45 : Elisabeth Gassiat
Nonparametric HMM models

While most talks were focussing on contraction and consistency rates, hence far from my current interests, both talk by Judith and Elisabeth held more appeal to me. Judith gave conditions for an empirical Bayes nonparametric modelling to be consistent, with examples taken from Peter Green’s mixtures of Dirichlet, and Elisabeth concluded with a very generic result on the consistent estimation of a finite hidden Markov model. (Incidentally, the same BANHDITS grant will also support the satellite meeting on Bayesian non-parametric at MCMSki IV on Jan. 09.)

mathematical statistics books with Bayesian chapters [incomplete book reviews]

Posted in Books, Statistics, University life with tags , , , , , , , , on July 9, 2013 by xi'an

I received (in the same box) two mathematical statistics books from CRC Press, Understanding Advanced Statistical Methods by Westfall and Henning, and Statistical Theory A Concise Introduction by Abramovich and Ritov. For review in CHANCE. While they are both decent books for teaching mathematical statistics at undergraduate borderline graduate level, I do not find enough of a novelty in them to proceed to a full review. (Given more time, I could have changed my mind about the first one.) Instead, I concentrate here on their processing of the Bayesian paradigm, which takes a wee bit more than a chapter in either of them. (And this can be done over a single métro trip!) The important following disclaimer applies: comparing both books is highly unfair in that it is only because I received them together. They do not necessarily aim at the same audience. And I did not read the whole of either of them.

First, the concise Statistical Theory  covers the topic in a fairly traditional way. It starts with a warning about the philosophical nature of priors and posteriors, which reflect beliefs rather than frequency limits (just like likelihoods, no?!). It then introduces priors with the criticism that priors are difficult to build and assess. The two classes of priors analysed in this chapter are unsurprisingly conjugate priors (which hyperparameters have to be determined or chosen or estimated in the empirical Bayes heresy [my words!, not the authors']) and “noninformative (objective) priors”.  The criticism of the flat priors is also traditional and leads to the  group invariant (Haar) measures, then to Jeffreys non-informative priors (with the apparent belief that Jeffreys only handled the univariate case). Point estimation is reduced to posterior expectations, confidence intervals to HPD regions, and testing to posterior probability ratios (with a warning about improper priors). Bayes rules make a reappearance in the following decision-theory chapter, as providers of both admissible and minimax estimators. This is it, as Bayesian techniques are not mentioned in the final “Linear Models” chapter. As a newcomer to statistics, I think I would be as bemused about Bayesian statistics as when I got my 15mn entry as a student, because here was a method that seemed to have a load of history, an inner coherence, and it was mentioned as an oddity in an otherwise purely non-Bayesian course. What good could this do to the understanding of the students?! So I would advise against getting this “token Bayesian” chapter in the book

“You are not ignorant! Prior information is what you know prior to collecting the data.” Understanding Advanced Statistical Methods (p.345)

Second, Understanding Advanced Statistical Methods offers a more intuitive entry, by justifying prior distributions as summaries of prior information. And observations as a mean to increase your knowledge about the parameter. The Bayesian chapter uses a toy but very clear survey examplew to illustrate the passage from prior to posterior distributions. And to discuss the distinction between informative and noninformative priors. (I like the “Ugly Rule of Thumb” insert, as it gives a guideline without getting too comfy about it… E.g., using a 90% credible interval is good enough on p.354.) Conjugate priors are mentioned as a result of past computational limitations and simulation is hailed as a highly natural tool for analysing posterior distributions. Yay! A small section discusses the purpose of vague priors without getting much into details and suggests to avoid improper priors by using “distributions with extremely large variance”, a concept we dismissed in Bayesian Core! For how large is “extremely large”?!

“You may end up being surprised to learn in later chapters (..) that, with classical methods, you simply cannot perform the types of analyses shown in this section (…) And that’s the answer to the question, “What good is Bayes?””Understanding Advanced Statistical Methods (p.345)

Then comes the really appreciable part, a section entitled “What good is Bayes?”—it actually reads “What Good is Bayes?” (p.359), leading to a private if grammatically poor joke since I.J. Good was one of the first modern Bayesians, working with Turing at Bletchley Park…—  The authors simply skip the philosophical arguments to give the reader a showcase of examples where the wealth of the Bayesian toolbox: logistic regression, VaR (Value at Risk), stock prices, drug profit prediction. Concluding with arguments in favour of the frequentist methods: (a) not requiring priors, (b) easier with generic distributifrequentistons, (c) easier to understand with simulation, and (d) easier to validate with validation. I do not mean to get into a debate about those points as my own point is that the authors are taking a certain stand about the pros and cons of the frequentist/Bayesian approaches and that they are making their readers aware of it. (Note that the Bayesian chapter comes before the frequentist chapter!) A further section is “Comparing the Bayesian and frequentist paradigms?” (p.384), again with a certain frequentist slant, but again making the distinctions and similarities quite clear to the reader. Of course, there is very little (if any) about Bayesian approaches in the next chapters but this is somehow coherent with the authors’ perspective. Once more, a perspective that is well-spelled and comprehensible for the reader. Even the novice statistician. In that sense, having a Bayesian chapter inside a general theory book makes sense.  (The second book has a rather detailed website, by the way! Even though handling simulations in Excel and drawing graphs in SAS could be dangerous to your health…)

Bayes’ Theorem in the 21st Century, really?!

Posted in Books, Statistics with tags , , , , , , on June 20, 2013 by xi'an

“In place of past experience, frequentism considers future behavior: an optimal estimator is one that performs best in hypothetical repetitions of the current experiment. The resulting gain in scientific objectivity has carried the day…”

Julien Cornebise sent me this Science column by Brad Efron about Bayes’ theorem. I am a tad surprised that it got published in the journal, given that it does not really contain any new item of information. However, being unfamiliar with Science, it may also be that it also publishes major scientists’ opinions or warnings, a label that can fit this column in Science. (It is quite a proper coincidence that the post appears during Bayes 250.)

Efron’s piece centres upon the use of objective Bayes approaches in Bayesian statistics, for which Laplace was “the prime violator”. He argues through examples that noninformative “Bayesian calculations cannot be uncritically accepted, and should be checked by other methods, which usually means “frequentistically”. First, having to write “frequentistically” once is already more than I can stand! Second, using the Bayesian framework to build frequentist procedures is like buying top technical outdoor gear to climb the stairs at the Sacré-Coeur on Butte Montmartre! The naïve reader is then left clueless as to why one should use a Bayesian approach in the first place. And perfectly confused about the meaning of objectivity. Esp. given the above quote! I find it rather surprising that this old saw of a  claim of frequentism to objectivity resurfaces there. There is an infinite range of frequentist procedures and, while some are more optimal than others, none is “the” optimal one (except for the most baked-out examples like say the estimation of the mean of a normal observation).

“A Bayesian FDA (there isn’t one) would be more forgiving. The Bayesian posterior probability of drug A’s superiority depends only on its final evaluation, not whether there might have been earlier decisions.”

The second criticism of Bayesianism therein is the counter-intuitive irrelevance of stopping rules. Once again, the presentation is fairly biased, because a Bayesian approach opposes scenarii rather than evaluates the likelihood of a tail event under the null and only the null. And also because, as shown by Jim Berger and co-authors, the Bayesian approach is generally much more favorable to the null than the p-value.

“Bayes’ Theorem is an algorithm for combining prior experience with current evidence. Followers of Nate Silver’s FiveThirtyEight column got to see it in spectacular form during the presidential campaign: the algorithm updated prior poll results with new data on a daily basis, nailing the actual vote in all 50 states.”

It is only fair that Nate Silver’s book and column are mentioned in Efron’s column. Because it is a highly valuable and definitely convincing illustration of Bayesian principles. What I object to is the criticism “that most cutting-edge science doesn’t enjoy FiveThirtyEight-level background information”. In my understanding, the poll model of FiveThirtyEight built up in a sequential manner a weight system over the different polling companies, hence learning from the data if in a Bayesian manner about their reliability (rather than forgetting the past). This is actually what caused Larry Wasserman to consider that Silver’s approach was actually more frequentist than Bayesian…

“Empirical Bayes is an exciting new statistical idea, well-suited to modern scientific technology, saying that experiments involving large numbers of parallel situations carry within them their own prior distribution.”

My last point of contention is about the (unsurprising) defence of the empirical Bayes approach in the Science column. Once again, the presentation is biased towards frequentism: in the FDR gene example, the empirical Bayes procedure is motivated by being the frequentist solution. The logical contradiction in “estimat[ing] the relevant prior from the data itself” is not discussed and the conclusion that Brad Efron uses “empirical Bayes methods in the parallel case [in the absence of prior information”, seemingly without being cautious and “uncritically”, does not strike me as the proper last argument in the matter! Nor does it give a 21st Century vision of what nouveau Bayesianism should be, faced with the challenges of Big Data and the like…

Follow

Get every new post delivered to your Inbox.

Join 667 other followers