Archive for Error and Inference

Error and Inference [arXived]

Posted in Books, Statistics, University life with tags , , , , , , , on November 29, 2011 by xi'an

Following my never-ending series of posts on the book Error and Inference, (edited) by Deborah Mayo and Ari Spanos (and kindly sent to me by Deborah), I decided to edit those posts into a (slightly) more coherent document, now posted on arXiv. And to submit it as a book review to Siam Review, even though I had not high expectations it fits the purpose of the journal: the review was rejected between the submission to arXiv and the publication of this post!

the cult of significance

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on October 18, 2011 by xi'an

Statistical significance is not a scientific test. It is a philosophical, qualitative test. It asks “whether”. Existence, the question of whether, is interesting. But it is not scientific.” S. Ziliak and D. McCloskey, p.5

The book, written by economists Stephen Ziliak and Deirdre McCloskey, has a theme bound to attract Bayesians and all those puzzled by the absolute and automatised faith in significance tests. The main argument of the authors is indeed that an overwhelming majority of papers stop at rejecting variables (“coefficients”) on the sole and unsupported basis of non-significance at the 5% level. Hence the subtitle “How the standard error costs us jobs, justice, and lives“… This is an argument I completely agree with, however, the aggressive style of the book truly put me off! As with Error and Inference, which also addresses a non-Bayesian issue, I could have let the matter go, however I feel the book may in the end be counter-productive and thus endeavour to explain why through this review.  (I wrote the following review in batches, before and during my trip to Dublin, so the going is rather broken, I am afraid…) Continue reading

Error and Inference [end]

Posted in Books, Statistics, University life with tags , , , , , , , , , on October 11, 2011 by xi'an

(This is my sixth and last post on Error and Inference, being as previously a raw and naïve reaction born from a linear and sluggish reading of the book, rather than a deeper and more informed criticism with philosophical bearings. Read at your own risk.)

‘It is refreshing to see Cox and Mayo give a hard-nosed statement of what scientific objectivity demands of an account of statistics, show how it relates to frequentist statistics, and contrast that with the notion of “objectivity” used by O-Bayesians.”—A. Spanos, p.326, Error and Inference, 2010

In order to conclude my pedestrian traverse of Error and Inference, I read the discussion by Aris Spanos of the second part of the seventh chapter by David Cox’s and Deborah Mayo’s, discussed in the previous post. (In the train to the half-marathon to be precise, which may have added a sharper edge to the way I read it!) The first point in the discussion is that the above paper is “a harmonious blend of the Fisherian and N-P perspectives to weave a coherent frequentist inductive reasoning anchored firmly on error probabilities”(p.316). The discussion by Spanos is very much a-critical of the paper, so I will not engage into a criticism of the non-criticism, but rather expose some thoughts of mine that came from reading this apology. (Remarks about Bayesian inference are limited to some piques like the above, which only reiterates those found earlier [and later: "the various examples Bayesians employ to make their case involve some kind of "rigging" of the statistical model", Aris Spanos, p.325; "The Bayesian epistemology literature is filled with shadows and illusions", Clark Glymour, p. 335] in the book.) [I must add I do like the mention of O-Bayesians, as I coined the O'Bayes motto for the objective Bayes bi-annual meetings from 2003 onwards! It also reminds me of the O-rings and of the lack of proper statistical decision-making in the Challenger tragedy...]

The “general frequentist principle for inductive reasoning” (p.319) at the core of Cox and Mayo’s paper is obviously the central role of the p-value in “providing (strong) evidence against the null H0 (for a discrepancy from H0)”. Once again, I fail to see it as the epitome of a working principle in that

  1. it depends on the choice of a divergence d(z), which reduces the information brought by the data z;
  2. it does not articulate the level for labeling nor the consequences of finding a low p-value;
  3. it ignores the role of the alternative hypothesis.

Furthermore, Spanos’ discussion deals with “the fallacy of rejection” (pp.319-320) in a rather artificial (if common) way, namely by setting a buffer of discrepancy γ around the null hypothesis. While the choice of a maximal degree of precision sounds natural to me (in the sense that a given sample size should not allow for the discrimination between two arbitrary close values of the parameter), the fact that γ is in fine set by the data (so that the p-value is high) is fairly puzzling. If I understand correctly, the change from a p-value to a discrepancy γ is a fine device to make the “distance” from the null better understood, but it has an extremely limited range of application. If I do not understand correctly, the discrepancy γ is fixed by the statistician and then this sounds like an extreme form of prior selection.

There is at least one issue I do not understand in this part, namely the meaning of the severity evaluation probability

P(d(Z) > d(z_0);\,\mu> \mu_1)

as the conditioning on the event seems impossible in a frequentist setting. This leads me to an idle and unrelated questioning as to whether there is a solution to

\sup_d \mathbb{P}_{H_0}(d(Z) \ge d(z_0))

as this would be the ultimate discrepancy. Or whether this does not make any sense… because of the ambiguous role of z0, which needs somehow to be integrated out. (Otherwise, d can be chosen so that the probability is 1.)

“If one renounces the likelihood, the stopping rule, and the coherence principles, marginalizes the use of prior information as largely untrustworthy, and seek procedures with `good’ error probabilistic properties (whatever that means), what is left to render the inference Bayesian, apart from a belief (misguided in my view) that the only way to provide an evidential account of inference is to attach probabilities to hypotheses?”—A. Spanos, p.326, Error and Inference, 2010

The role of conditioning ancillary statistics is emphasized both in the paper and the discussion. This conditioning clearly reduces variability, however there is no reservation about the arbitrariness of such ancillary statistics. And the fact that conditioning any further would lead to conditioning upon the whole data, i.e. to a Bayesian solution. I also noted a curious lack of proper logical reasoning in the argument that, when

f(z|\theta) \propto f(z|s) f(s|\theta),

using the conditional ancillary distribution is enough, since, while “any departure from f(z|s) implies that the overall model is false” (p.322), but not the reverse. Hence, a poor choice of s may fail to detect a departure. (Besides the fact that  fixed-dimension sufficient statistics do not exist outside exponential families.) Similarly, Spanos expands about the case of a minimal sufficient statistic that is independent from a maximal ancillary statistic, but such cases are quite rare and limited to exponential families [in the iid case]. Still in the conditioning category, he also supports Mayo’s argument against the likelihood principle being a consequence of the sufficiency and weak conditionality principles. A point I discussed in a previous post. However, he does not provide further evidence against Birnbaum’s result, arguing rather in favour of a conditional frequentist inference I have nothing to complain about. (I fail to perceive the appeal of the Welch uniform example in terms of the likelihood principle.)

In an overall conclusion, let me repeat and restate that this series of posts about Error and Inference is far from pretending at bringing a Bayesian reply to the philosophical arguments raised in the volume. The primary goal being of “taking some crucial steps towards legitimating the philosophy of frequentist statistics” (p.328), I should not feel overly concerned. It is only when the debate veered towards a comparison with the Bayesian approach [often too often of the "holier than thou" brand] that I felt allowed to put in my twopennies worth… I do hope I may crystallise this set of notes into a more constructed review of the book, if time allows, although I am pessimistic at the chances of getting it published given our current difficulties with the critical review of Murray Aitkin’s  Statistical Inference. However, as a coincidence, we got back last weekend an encouraging reply from Statistics and Risk Modelling, prompting us towards a revision and the prospect of a reply by Murray.

That the likelihood principle does not hold…

Posted in Statistics, University life with tags , , , , , , , , , , on October 6, 2011 by xi'an

Coming to Section III in Chapter Seven of Error and Inference, written by Deborah Mayo, I discovered that she considers that the likelihood principle does not hold (at least as a logical consequence of the combination of the sufficiency and of the conditionality principles), thus that  Allan Birnbaum was wrong…. As well as the dozens of people working on the likelihood principle after him! Including Jim Berger and Robert Wolpert [whose book sells for $214 on amazon!, I hope the authors get a hefty chunk of that ripper!!! Esp. when it is available for free on project Euclid...] I had not heard of  (nor seen) this argument previously, even though it has apparently created enough of a bit of a stir around the likelihood principle page on Wikipedia. It does not seem the result is published anywhere but in the book, and I doubt it would get past a review process in a statistics journal. [Judging from a serious conversation in Zürich this morning, I may however be wrong!]

The core of Birnbaum’s proof is relatively simple: given two experiments and about the same parameter θ with different sampling distributions and , such that there exists a pair of outcomes (y¹,y²) from those experiments with proportional likelihoods, i.e. as a function of θ

f^1(y^1|\theta) = c f^2(y^2|\theta),

one considers the mixture experiment E⁰ where  and are each chosen with probability ½. Then it is possible to build a sufficient statistic T that is equal to the data (j,x), except when j=2 and x=y², in which case T(j,x)=(1,y¹). This statistic is sufficient since the distribution of (j,x) given T(j,x) is either a Dirac mass or a distribution on {(1,y¹),(2,y²)} that only depends on c. Thus it does not depend on the parameter θ. According to the weak conditionality principle, statistical evidence, meaning the whole range of inferences possible on θ and being denoted by Ev(E,z), should satisfy

Ev(E^0, (j,x)) = Ev(E^j,x)

Because the sufficiency principle states that

Ev(E^0, (j,x)) = Ev(E^0,T(j,x))

this leads to the likelihood principle

Ev(E^1,y^1)=Ev(E^0, (j,y^j)) = Ev(E^2,y^2)

(See, e.g., The Bayesian Choice, pp. 18-29.) Now, Mayo argues this is wrong because

“The inference from the outcome (Ej,yj) computed using the sampling distribution of [the mixed experiment] E⁰ is appropriately identified with an inference from outcome yj based on the sampling distribution of Ej, which is clearly false.” (p.310)

This sounds to me like a direct rejection of the conditionality principle, so I do not understand the point. (A formal rendering in Section 5 using the logic formalism of A’s and Not-A’s reinforces my feeling that the conditionality principle is the one criticised and misunderstood.) If Mayo’s frequentist stance leads her to take the sampling distribution into account at all times, this is fine within her framework. But I do not see how this argument contributes to invalidate Birnbaum’s proof. The following and last sentence of the argument may bring some light on the reason why Mayo considers it does:

“The sampling distribution to arrive at Ev(E⁰,(j,yj)) would be the convex combination averaged over the two ways that yj could have occurred. This differs from the  sampling distributions of both Ev(E1,y1) and Ev(E2,y2).” (p.310)

Indeed, and rather obviously, the sampling distribution of the evidence Ev(E*,z*) will differ depending on the experiment. But this is not what is stated by the likelihood principle, which is that the inference itself should be the same for and . Not the distribution of this inference. This confusion between inference and its assessment is reproduced in the “Explicit Counterexample” section, where p-values are computed and found to differ for various conditional versions of a mixed experiment. Again, not a reason for invalidating the likelihood principle. So, in the end, I remain fully unconvinced by this demonstration that Birnbaum was wrong. (If in a bystander’s agreement with the fact that frequentist inference can be built conditional on ancillary statistics.)

Don Fraser’s rejoinder

Posted in Books, Statistics, University life with tags , , , , , , on August 24, 2011 by xi'an

“How can a discipline, central to science and to critical thinking, have two methodologies, two logics, two approaches that frequently give substantially different answers to the same problems. Any astute person from outside would say “Why don’t they put their house in order?”” Don Fraser

Following the discussions of his Statistical Science paper Is Bayes posterior just quick and dirty confidence?, by Kesar Singh and Minge Xie, Larry Wasserman (who coined the neologism Frasian for the occasion), Tong Zhang, and myself, Don Fraser has written his rejoinder to the discussion (although in Biometrika style it is for Statistical Science!). His conclusion that “no one argued that the use of the conditional probability lemma with an imaginary input had powers beyond confidence, supernatural powers” is difficult to escape, as I would not dream of promoting a super-Bayes jumping to the rescue of bystanders misled by evil frequentists!!! More seriously, this rejoinder makes me reflect on lectures from the past years, from those on the diverse notions of probability (Jeffreys, Keynes, von Mises, and Burdzy) to those on scientific discovery (mostly Seber‘s, and the promising Error and Inference by Mayo and Spanos I just received).

Follow

Get every new post delivered to your Inbox.

Join 640 other followers