Archive for Isaac Newton

Rivers of London [book review]

Posted in Books, Kids, Travel with tags , , , , , , , , , , , on October 25, 2014 by xi'an

London by Delta, Dec. 14, 2011Yet another book I grabbed on impulse while in Birmingham last month. And which had been waiting for me on a shelf of my office in Warwick. Another buy I do not regret! Rivers of London is delightful, as much for taking place in all corners of London as for the story itself. Not mentioning the highly enjoyable writing style!

“I though you were a sceptic, said Lesley. I though you were scientific”

The first volume in this detective+magic series, Rivers of London, sets the universe of this mix of traditional Metropolitan Police work and of urban magic, the title being about the deities of the rivers of London, including a Mother and a Father Thames… I usually dislike any story mixing modern life and fantasy but this is a definitive exception! What I enjoy in this book setting is primarily the language used in the book that is so uniquely English (to the point of having the U.S. edition edited!, if the author’s blog is to be believed). And the fact that it is so much about London, its history and inhabitants. But mostly about London, as an entity on its own. Even though my experience of London is limited to a few boroughs, there are many passages where I can relate to the location and this obviously makes the story much more appealing. The style is witty, ironic and full of understatements, a true pleasure.

“The tube is a good place for this sort of conceptual breakthrough because, unless you’ve got something to read, there’s bugger all else to do.”

The story itself is rather fun, with at least three levels of plots and two types of magic. It centres around two freshly hired London constables, one of them discovering magical abilities and been drafted to the supernatural section of the Metropolitan Police. And making all the monologues in the book. The supernatural section is made of a single Inspector, plus a few side characters, but with enough fancy details to give it life. In particular, Isaac Newton is credited with having started the section, called The Folly. Which is also the name of Ben Aaronovitch’s webpage.

“There was a poster (…) that said: `Keep Calm and Carry On’, which I thought was good advice.”

This quote is unvoluntarily funny in that it takes place in a cellar holding material from World War II. Except that the now invasive red and white poster was never distributed during the war… On the opposite it was pulped to save paper and the fact that a few copies survived is a sort of (minor) miracle. Hence a double anachronism in that it did not belong to a WWII room and that Peter Grant should have seen its modern avatars all over London.

“Have you ever been to London? Don’t worry, it’s basically  just like the country. Only with more people.”

The last part of the book is darker and feels less well-written, maybe simply because of the darker side and of the accumulation of events, while the central character gets rather too central and too much of an unexpected hero that saves the day. There is in particular a part where he seems to forget about his friend Lesley who is in deep trouble at the time and this does not seem to make much sense. But, except for this lapse (maybe due to my quick reading of the book over the week in Warwick), the flow and pace are great, with this constant undertone of satire and wit from the central character. I am definitely looking forward reading tomes 2 and 3 in the series (having already read tome 4 in Austria!, which was a mistake as there were spoilers about earlier volumes).

Le Monde puzzle [#824]

Posted in Books, Kids, R with tags , , , on June 13, 2013 by xi'an

A rather dull puzzle this week:

Show that, for any integer y, (√3-1)2y+(√3+1)2y is an integer multiple of a power of two.

I just have to apply Newton’s binomial theorem to obtain the result. What’s the point?!

17 equations that changed the World (#1)

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , on October 15, 2012 by xi'an

I do not know if it is a coincidence or if publishers were competing for the same audience: after reviewing The universe in zero word: The story of mathematics as told through equations, in this post (and in CHANCE, to appear in 25(3)!), I noticed Ian Stewart’s 17 equations That Changed the World, published in 2011, and I bought a copy to check the differences between both books.

I am quite glad I did so, as I tremendously enjoyed this book, both for its style and its contents, both entertaining and highly informative. This does not come as a big surprise, given Stewart’s earlier books and their record, however this new selection and discussion of equations is clearly superior to The universe in zero word! Maybe because it goes much further in its mathematical complexity, hence is more likely to appeal to the mathematically inclined (to borrow from my earlier review). For one thing, it does not shy away from inserting mathematical formulae and small proofs into the text, disregarding the risk of cutting many halves of the audience (I know, I know, high powers of (1/2)…!) For another, 17 equations That Changed the World uses the equation under display to extend the presentation much much further than The universe in zero word. It is also much more partisan (in an overall good way) in its interpretations and reflections about the World.

In opposition with The universe in zero word, formulas are well-presented, each character in the formula being explained in layman terms. (Once again, the printer could have used better fonts and the LaTeX word processor.) The (U.K. edition, see tomorrow!) cover is rather ugly, though, when compared with the beautiful cover of The universe in zero word. But this is a minor quibble! Overall, it makes for an enjoyable, serious and thought-provoking read that I once again undertook mostly in transports (planes and métros). Continue reading

the universe in zero words

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , , , , , on May 30, 2012 by xi'an

The universe in zero words: The story of mathematics as told through equations is a book with a very nice cover: in case you cannot see the details on the picture, what looks like stars on a bright night sky are actually equations discussed in the book (plus actual stars!)…

The universe in zero words is written by Dana Mackenzie (check his website!) and published by Princeton University Press. (I received it in the mail from John Wiley for review, prior to its publication on May 16, nice!) It reads well and quick: I took it with me in the métro one morning and was half-way through it the same evening, as the universe in zero words remains on the light side, esp. for readers with a high-school training in math. The book strongly reminded me (at times) of my high school years and of my fascination for Cardano’s formula and the non-Euclidean geometries. I was also reminded of studying quaternions for a short while as an undergraduate by the (arguably superfluous) chapter on Hamilton. So a pleasant if unsurprising read, with a writing style that is not always at its best, esp. after reading Bill Bryson’s “Seeing Further: The Story of Science, Discovery, and the Genius of the Royal Society“, and a book unlikely to bring major epiphanies to the mathematically inclined. If well-documented, free of typos, and engaging into some mathematical details (accepting to go against the folk rule that “For every equation you put in, you will lose half of your audience.” already mentioned in Diaconis and Graham’s book). With alas a fundamental omission: no trace is found therein of Bayes’ formula! (The very opposite of Bryson’s introduction, who could have arguably stayed away from it.) The closest connection with statistics is the final chapter on the Black-Scholes equation, which does not say much about probability…. It is of course the major difficulty with the exercise of picking 24 equations out of the history of maths and physics that some major and influential equations had to be set aside… Maybe the error was in covering (or trying to cover) formulas from physics as well as from maths. Now, rather paradoxically (?) I learned more from the physics chapters: for instance, the chapters on Maxwell’s, Einstein’s, and Dirac’s formulae are very well done. The chapter on the fundamental theorem of calculus is also appreciable.

Continue reading

Seeing Further, &tc.

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , on May 23, 2012 by xi'an

I can tell you at once that my favourite fellow of the Royal Society was the Reverend Thomas Bayes, from Turnbridge Wells in Kent, who lived from about 1701 to 1761. He was by all accounts a hopeless preacher, but a brilliant mathematician.” B. Bryson, Seeing Further, page 2.

After begging for a copy with Harper and Collins (!), I eventually managed to get hold of Bill Bryson’s “Seeing Further: The Story of Science, Discovery, and the Genius of the Royal Society“. Now, a word of warning: Bill Bryson is the editor of the book, meaning he wrote the very first chapter, plus a paragraph of introduction to the 21 next chapters. If, like me, you are a fan of Bryson’s hilarious style and stories (and have been for the past twenty years, starting with “Mother Tongue” about the English language), you will find this distinction rather unfortunate, esp. because it is not particularly well-advertised… But, after opening the book, you should not remain cross very long, and this for two reasons: the first one is that Bayes’s theorem appears on the very first page (written by Bryson, mind you!), with enough greek letters to make sure we are talking of our Bayes rule! This reason is completed by the above sentence which is in fact the very first in the book! Bryson took for sure a strong liking to Reverent Bayes to pick him as the epitome of a FRS! And he further avoids using this suspicious picture of the Reverent that plagues so many of our sites and talks… Bryson includes instead a letter from Thomas Bayes dated 1763, which must mean it was sent by Richard Price towards the publication of “An Essay towards solving a Problem in the Doctrine of Chances” in the Philosophical Transactions, as Bayes had been dead by two years at that time.

What about my second reason? Well, the authors selected by Bryson to write this eulogy of the Royal Society are mostly scientific writers like Richard Dawkins and James Gleick, scientists like Martin Rees and many others, and even a cyberpunk writer like Neal Stephenson, a selection that should not come as a surprise given his monumental Baroque Cycle about Isaac Newton and friends. Now, Neal Stephenson gets to the next level of awesome by writing a chapter on the philosophical concepts of Leibniz, FRS, the monads, and the fact that it was not making sense until quantum mechanics was introduced (drawing inspiration from a recent book by Christia Mercer). Now, the chapters of the book are quite uneven, some are about points not much related to the Royal Society, or bringing little light upon it. But overall the feeling that perspires the book is one of tremendous achievement by this conglomerate of men (and then women after 1945!) who started a Society about useful knowledge in 1660…

Continue reading

Abraham De Moivre

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , on March 7, 2012 by xi'an

During my week in Roma, I read David Bellhouse’s book on Abraham De Moivre (at night and in the local transportations and even in Via del Corso waiting for my daughter!)… This is a very scholarly piece of work, with many references to original documents, and it may not completely appeal to the general audience: The Baroque Cycle by Neal Stephenson is covering the same period and the rise of the “scientific man” (or Natural Philosopher) in a much more novelised manner, while centering on Newton as its main character and on the earlier Newton-Leibniz dispute, rather than the later Newton-(De Moivre)-Bernoulli dispute. (De Moivre does not appear in the books, at least under his name.)

Bellhouse’s book should however fascinate most academics in that, beside going with the uttermost detail into De Moivre’s contributions to probability, it uncovers the way (mathematical) research was done in the 17th and 18th century England: De Moivre never got an academic position (although he applied for several ones, incl. in Cambridge), in part because he was an emigrated French huguenot (after the revocation of the Édit de Nantes by Louis XIV), and he got a living by tutoring gentry and aristocracy sons in mathematics and accounting. He also was a consultant on annuities. His interactions with other mathematicians of the time was done through coffee-houses, the newly founded Royal Society, and letters. De Moivre published most of his work in the Philosophical Transactions and in self-edited books that he financed by subscriptions. (As a Frenchman, I personally[and so did Jacob Bernoulli!] found puzzling the fact that De Moivre never wrote anything in french but assimilated very quickly into English society.)

Another fascinating aspect of the book is the way English (incl. De Moivre) and Continental mathematicians fought and bickered on the priority of discoveries. Because their papers were rarely and slowly published, and even more slowly distributed throughout Western Europe, they had to rely on private letters for those priority claims. De Moivre’s main achievement is his book, The Doctrine of Chances, which contains among clever binomial derivations on various chance games an occurrence of the central limit theorem for binomial experiments. And the use of generating functions. De Moivre had a suprisingly long life since he died at 87 in London, still giving private lessons as old as 72. Besides being seen as a leading English mathematician, he eventually got recognised by the French Académie Royale des Sciences, if as a foreign member, a few months prior to his death (as well as by the Berlin Academy of Sciences). There is also a small section in the book on the connections between De Moivre and Thomas Bayes (pp. 200-203), although very little is known of their personal interactions. Bayes was close to one of De Moivre’s former students, Phillip Stanhope, and he worked on several of De Moivre’s papers to get entry to the Royal Society. Some open question is whether or not Bayes was ever tutored by De Moivre, although there is no material proof he did. The book also mentions Bayes’ theorem in connection with an comment on The Doctrine of Chances by Hartley (p.191), as if De Moivre had an hand in it or at least a knowledge of it, but this seems unlikely…

In conclusion, this is a highly pleasant and easily readable book on the career of a major mathematician and of one of the founding fathers of probability theory. David Bellhouse is to be congratulated on the scholarship exhibited by this book and on the painstaking pursuit of all historical documents related with De Moivre’s life.


Get every new post delivered to your Inbox.

Join 673 other followers