Archive for measure theory

full Bayesian significance test

Posted in Books, Statistics with tags , , , , , , , , , , on December 18, 2014 by xi'an

Among the many comments (thanks!) I received when posting our Testing via mixture estimation paper came the suggestion to relate this approach to the notion of full Bayesian significance test (FBST) developed by (Julio, not Hal) Stern and Pereira, from São Paulo, Brazil. I thus had a look at this alternative and read the Bayesian Analysis paper they published in 2008, as well as a paper recently published in Logic Journal of IGPL. (I could not find what the IGPL stands for.) The central notion in these papers is the e-value, which provides the posterior probability that the posterior density is larger than the largest posterior density over the null set. This definition bothers me, first because the null set has a measure equal to zero under an absolutely continuous prior (BA, p.82). Hence the posterior density is defined in an arbitrary manner over the null set and the maximum is itself arbitrary. (An issue that invalidates my 1993 version of the Lindley-Jeffreys paradox!) And second because it considers the posterior probability of an event that does not exist a priori, being conditional on the data. This sounds in fact quite similar to Statistical Inference, Murray Aitkin’s (2009) book using a posterior distribution of the likelihood function. With the same drawback of using the data twice. And the other issues discussed in our commentary of the book. (As a side-much-on-the-side remark, the authors incidentally  forgot me when citing our 1992 Annals of Statistics paper about decision theory on accuracy estimators..!)

reflections on the probability space induced by moment conditions with implications for Bayesian Inference [slides]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , on December 4, 2014 by xi'an

defsunset2Here are the slides of my incoming discussion of Ron Gallant’s paper, tomorrow.

another instance of ABC?

Posted in Statistics with tags , , , , , on December 2, 2014 by xi'an

“These characteristics are (1) likelihood is not available; (2) prior information is available; (3) a portion of the prior information is expressed in terms of functionals of the model that cannot be converted into an analytic prior on model parameters; (4) the model can be simulated. Our approach depends on an assumption that (5) an adequate statistical model for the data are available.”

A 2009 JASA paper by Ron Gallant and Rob McCulloch, entitled “On the Determination of General Scientific Models With Application to Asset Pricing”, may have or may not have connection with ABC, to wit the above quote, but I have trouble checking whether or not this is the case.

The true (scientific) model parametrised by θ is replaced with a (statistical) substitute that is available in closed form. And parametrised by g(θ). [If you can get access to the paper, I’d welcome opinions about Assumption 1 therein which states that the intractable density is equal to a closed-form density.] And the latter is over-parametrised when compared with the scientific model. As in, e.g., a N(θ,θ²) scientific model versus a N(μ,σ²) statistical model. In addition, the prior information is only available on θ. However, this does not seem to matter that much since (a) the Bayesian analysis is operated on θ only and (b) the Metropolis approach adopted by the authors involves simulating a massive number of pseudo-observations, given the current value of the parameter θ and the scientific model, so that the transform g(θ) can be estimated by maximum likelihood over the statistical model. The paper suggests using a secondary Markov chain algorithm to find this MLE. Which is claimed to be a simulated annealing resolution (p.121) although I do not see the temperature decreasing. The pseudo-model is then used in a primary MCMC step.

Hence, not truly an ABC algorithm. In the same setting, ABC would use a simulated dataset the same size as the observed dataset, compute the MLEs for both and compare them. Faster if less accurate when Assumption 1 [that the statistical model holds for a restricted parametrisation] does not stand.

Another interesting aspect of the paper is about creating and using a prior distribution around the manifold η=g(θ). This clearly relates to my earlier query about simulating on measure zero sets. The paper does not bring a definitive answer, as it never simulates exactly on the manifold, but this constitutes another entry on this challenging problem…

reflections on the probability space induced by moment conditions with implications for Bayesian Inference [discussion]

Posted in Books, Statistics, University life with tags , , , , , , on December 1, 2014 by xi'an

[Following my earlier reflections on Ron Gallant’s paper, here is a more condensed set of questions towards my discussion of next Friday.]

“If one specifies a set of moment functions collected together into a vector m(x,θ) of dimension M, regards θ as random and asserts that some transformation Z(x,θ) has distribution ψ then what is required to use this information and then possibly a prior to make valid inference?” (p.4)

The central question in the paper is whether or not given a set of moment equations

\mathbb{E}[m(X_1,\ldots,X_n,\theta)]=0

(where both the Xi‘s and θ are random), one can derive a likelihood function and a prior distribution compatible with those. It sounds to me like a highly complex question since it implies the integral equation

\int_{\Theta\times\mathcal{X}^n} m(x_1,\ldots,x_n,\theta)\,\pi(\theta)f(x_1|\theta)\cdots f(x_n|\theta) \text{d}\theta\text{d}x_1\cdots\text{d}x_n=0

must have a solution for all n’s. A related question that was also remanent with fiducial distributions is how on Earth (or Middle Earth) the concept of a random theta could arise outside Bayesian analysis. And another one is how could the equations make sense outside the existence of the pair (prior,likelihood). A question that may exhibit my ignorance of structural models. But which may also relate to the inconsistency of Zellner’s (1996) Bayesian method of moments as exposed by Geisser and Seidenfeld (1999).

For instance, the paper starts (why?) with the Fisherian example of the t distribution of

Z(x,\theta) = \frac{\bar{x}_n-\theta}{s/\sqrt{n}}

which is truly is a t variable when θ is fixed at the true mean value. Now, if we assume that the joint distribution of the Xi‘s and θ is such that this projection is a t variable, is there any other case than the Dirac mass on θ? For all (large enough) sample sizes n? I cannot tell and the paper does not bring [me] an answer either.

When I look at the analysis made in the abstraction part of the paper, I am puzzled by the starting point (17), where

p(x|\theta) = \psi(Z(x,\theta))

since the lhs and rhs operate on different spaces. In Fisher’s example, x is an n-dimensional vector, while Z is unidimensional. If I apply blindly the formula on this example, the t density does not integrate against the Lebesgue measure in the n-dimension Euclidean space… If a change of measure allows for this representation, I do not see so much appeal in using this new measure and anyway wonder in which sense this defines a likelihood function, i.e. the product of n densities of the Xi‘s conditional on θ. To me this is the central issue, which remains unsolved by the paper.

MCMC on zero measure sets

Posted in R, Statistics with tags , , , , , , , on March 24, 2014 by xi'an

zeromesSimulating a bivariate normal under the constraint (or conditional to the fact) that x²-y²=1 (a non-linear zero measure curve in the 2-dimensional Euclidean space) is not that easy: if running a random walk along that curve (by running a random walk on y and deducing x as x²=y²+1 and accepting with a Metropolis-Hastings ratio based on the bivariate normal density), the outcome differs from the target predicted by a change of variable and the proper derivation of the conditional. The above graph resulting from the R code below illustrates the discrepancy!

targ=function(y){
  exp(-y^2)/(1.52*sqrt(1+y^2))}

T=10^5
Eps=3
ys=xs=rep(runif(1),T)
xs[1]=sqrt(1+ys[1]^2)
for (t in 2:T){
  propy=runif(1,-Eps,Eps)+ys[t-1]
  propx=sqrt(1+propy^2)
  ace=(runif(1)<(dnorm(propy)*dnorm(propx))/
               (dnorm(ys[t-1])*dnorm(xs[t-1])))
  if (ace){
     ys[t]=propy;xs[t]=propx
     }else{
       ys[t]=ys[t-1];xs[t]=xs[t-1]}}

If instead we add the proper Jacobian as in

  ace=(runif(1)<(dnorm(propy)*dnorm(propx)/propx)/
               (dnorm(ys[t-1])*dnorm(xs[t-1])/xs[t-1]))

the fit is there. My open question is how to make this derivation generic, i.e. without requiring the (dreaded) computation of the (dreadful) Jacobian.

zeromas

testing via credible sets

Posted in Statistics, University life with tags , , , , , , , , , , , on October 8, 2012 by xi'an

Måns Thulin released today an arXiv document on some decision-theoretic justifications for [running] Bayesian hypothesis testing through credible sets. His main point is that using the unnatural prior setting mass on a point-null hypothesis can be avoided by rejecting the null when the point-null value of the parameter does not belong to the credible interval and that this decision procedure can be validated through the use of special loss functions. While I stress to my students that point-null hypotheses are very unnatural and should be avoided at all cost, and also that constructing a confidence interval is not the same as designing a test—the former assess the precision in the estimation, while the later opposes two different and even incompatible models—, let us consider Måns’ arguments for their own sake.

The idea of the paper is that there exist loss functions for testing point-null hypotheses that lead to HPD, symmetric and one-sided intervals as acceptance regions, depending on the loss func. This was already found in Pereira & Stern (1999). The issue with these loss functions is that they involve the corresponding credible sets in their definition, hence are somehow tautological. For instance, when considering the HPD set and T(x) as the largest HPD set not containing the point-null value of the parameter, the corresponding loss function is

L(\theta,\varphi,x) = \begin{cases}a\mathbb{I}_{T(x)^c}(\theta) &\text{when }\varphi=0\\ b+c\mathbb{I}_{T(x)}(\theta) &\text{when }\varphi=1\end{cases}

parameterised by a,b,c. And depending on the HPD region.

Måns then introduces new loss functions that do not depend on x and still lead to either the symmetric or the one-sided credible intervals.as acceptance regions. However, one test actually has two different alternatives (Theorem 2), which makes it essentially a composition of two one-sided tests, while the other test returns the result to a one-sided test (Theorem 3), so even at this face-value level, I do not find the result that convincing. (For the one-sided test, George Casella and Roger Berger (1986) established links between Bayesian posterior probabilities and frequentist p-values.) Both Theorem 3 and the last result of the paper (Theorem 4) use a generic and set-free observation-free loss function (related to eqn. (5.2.1) in my book!, as quoted by the paper) but (and this is a big but) they only hold for prior distributions setting (prior) mass on both the null and the alternative. Otherwise, the solution is to always reject the hypothesis with the zero probability… This is actually an interesting argument on the why-are-credible-sets-unsuitable-for-testing debate, as it cannot bypass the introduction of a prior mass on Θ0!

Overall, I furthermore consider that a decision-theoretic approach to testing should encompass future steps rather than focussing on the reply to the (admittedly dumb) question is θ zero? Therefore, it must have both plan A and plan B at the ready, which means preparing (and using!) prior distributions under both hypotheses. Even on point-null hypotheses.

Now, after I wrote the above, I came upon a Stack Exchange page initiated by Måns last July. This is presumably not the first time a paper stems from Stack Exchange, but this is a fairly interesting outcome: thanks to the debate on his question, Måns managed to get a coherent manuscript written. Great! (In a sense, this reminded me of the polymath experiments of Terry Tao, Timothy Gower and others. Meaning that maybe most contributors could have become coauthors to the paper!)

optimal direction Gibbs

Posted in Statistics, University life with tags , , , , , , on May 29, 2012 by xi'an

An interesting paper appeared on arXiv today. Entitled On optimal direction gibbs sampling, by Andrés Christen, Colin Fox, Diego Andrés Pérez-Ruiz and Mario Santana-Cibrian, it defines optimality as picking the direction that brings the maximum independence between two successive realisations in the Gibbs sampler. More precisely, it aims at choosing the direction e that minimises the mutual information criterion

\int\int f_{Y,X}(y,x)\log\dfrac{f_{Y,X}(y,x)}{f_Y(y)f_X(x)}\,\text{d}x\,\text{d}y

I have a bit of an issue about this choice because it clashes with measure theory. Indeed, in one Gibbs step associated with e the transition kernel is defined in terms of the Lebesgue measure over the line induced by e. Hence the joint density of the pair of successive realisations is defined in terms of the product of the Lebesgue measure on the overall space and of the Lebesgue measure over the line induced by e… While the product in the denominator is defined against the product of the Lebesgue measure on the overall space and itself. The two densities are therefore not comparable since not defined against equivalent measures… The difference between numerator and denominator is actually clearly expressed in the normal example (page 3) when the chain operates over a n dimensional space, but where the conditional distribution of the next realisation is one-dimensional, thus does not relate with the multivariate normal target on the denominator. I therefore do not agree with the derivation of the mutual information henceforth produced as (3).

The above difficulty is indirectly perceived by the authors, who note “we cannot simply choose the best direction: the resulting Gibbs sampler would not be irreducible” (page 5), an objection I had from an earlier page… They instead pick directions at random over the unit sphere and (for the normal case) suggest using a density over those directions such that

h^*(\mathbf{e})\propto(\mathbf{e}^\prime A\mathbf{e})^{1/2}

which cannot truly be called “optimal”.

More globally, searching for “optimal” directions (or more generally transforms) is quite a worthwhile idea, esp. when linked with adaptive strategies…

Follow

Get every new post delivered to your Inbox.

Join 717 other followers