Archive for mixture estimation

Cancun, ISBA 2014 [½ day #2]

Posted in pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , on July 19, 2014 by xi'an

Cancun12

Half-day #2 indeed at ISBA 2014, as the Wednesday afternoon kept to the Valencia tradition of free time, and potential cultural excursions, so there were only talks in the morning. And still the core poster session at (late) night. In which my student Kaniav Kamari presented a poster on a current project we are running with Kerrie Mengersen and Judith Rousseau on the replacement of the standard Bayesian testing setting with a mixture representation. Being half-asleep by the time the session started, I did not stay long enough to collect data on the reactions to this proposal, but the paper should be arXived pretty soon. And Kate Lee gave a poster on our importance sampler for evidence approximation in mixtures (soon to be revised!). There was also an interesting poster about reparameterisation towards higher efficiency of MCMC algorithms, intersecting with my long-going interest in the matter, although I cannot find a mention of it in the abstracts. And I had a nice talk with Eduardo Gutierrez-Pena about infering on credible intervals through loss functions. There were also a couple of appealing posters on g-priors. Except I was sleepwalking by the time I spotted them… (My conference sleeping pattern does not work that well for ISBA meetings! Thankfully, both next editions will be in Europe.)

Great talk by Steve McEachern that linked to our ABC work on Bayesian model choice with insufficient statistics, arguing towards robustification of Bayesian inference by only using summary statistics. Despite this being “against the hubris of Bayes”… Obviously, the talk just gave a flavour of Steve’s perspective on that topic and I hope I can read more to see how we agree (or not!) on this notion of using insufficient summaries to conduct inference rather than trying to model “the whole world”, given the mistrust we must preserve about models and likelihoods. And another great talk by Ioanna Manolopoulou on another of my pet topics, capture-recapture, although she phrased it as a partly identified model (as in Kline’s talk yesterday). This related with capture-recapture in that when estimating a capture-recapture model with covariates, sampling and inference are biased as well. I appreciated particularly the use of BART to analyse the bias in the modelling. And the talk provided a nice counterpoint to the rather pessimistic approach of Kline’s.

Terrific plenary sessions as well, from Wilke’s spatio-temporal models (in the spirit of his superb book with Noel Cressie) to Igor Prunster’s great entry on Gibbs process priors. With the highly significant conclusion that those processes are best suited for (in the sense that they are only consistent for) discrete support distributions. Alternatives are to be used for continuous support distributions, the special case of a Dirichlet prior constituting a sort of unique counter-example. Quite an inspiring talk (even though I had a few micro-naps throughout it!).

I shared my afternoon free time between discussing the next O’Bayes meeting (2015 is getting very close!) with friends from the Objective Bayes section, getting a quick look at the Museo Maya de Cancún (terrific building!), and getting some work done (thanks to the lack of wireless…)

posterior predictive checks for admixture models

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , on July 8, 2014 by xi'an

rainbows-four-studies2In a posting coincidence, just a few days after we arXived our paper on ABC model choice with random forests, where we use posterior predictive errors for assessing the variability of the random forest procedure, David Mimno, David Blei, and Barbara Engelhardt arXived a paper on posterior predictive checks to quantify lack-of-fit in admixture models of latent population structure, which deals with similar data and models, while also using the posterior predictive as a central tool. (Marginalia: the paper is a wee bit difficult to read [esp. with France-Germany playing in the airport bar!] as the modelling is only clearly described at the very end. I suspect this arXived version was put together out of a submission to a journal like Nature or PNAS, with mentions of a Methods section that does not appear here and of Supplementary Material that turned into subsections of the Discussion section.)

The dataset are genomic datasets made of SNPs (single nucleotide polymorphisms). For instance, the first (HapMap) dataset corresponds to 1,043 individuals and 468,167 SNPs. The model is simpler than Kingman’s coalescent, hence its likelihood does not require ABC steps to run inference. The admixture model in the paper is essentially a mixture model over ancestry indices with individual dependent weights with Bernoulli observations, hence resulting into a completed likelihood of the form

\prod_{i=1}^n\prod_{\ell=1}^L\prod_j \phi_{\ell,z_{i,\ell,j}}^{x_{i,\ell,j}}(1-\phi_{\ell,z_{i,\ell,j}})^{1-x_{i,\ell,j}}\theta_{i,z_{i,\ell,j}}

(which looks more formidable than it truly is!). Regular Bayesian inference is thus possible in this setting, implementing e.g. Gibbs sampling. The authors chose instead to rely on EM and thus derived the maximum likelihood estimators of the (many) parameters of the admixture. And of the latent variables z. Their posterior predictive check is based on the simulation of pseudo-observations (as in ABC!) from the above likelihood, with parameters and latent variables replaced with their EM estimates (unlike ABC). There is obviously some computational reason in doing this instead of simulating from the posterior, albeit implicit in the paper. I am however slightly puzzled by the conditioning on the latent variable estimate , as its simulation is straightforward and as a latent variable is more a missing observation than a parameter. Given those 30 to 100 replications of the data, an empirical distribution of a discrepancy function is used to assess whether or not the equivalent discrepancy for the observation is an outlier. If so, the model is not appropriate for the data. (Interestingly, the discrepancy is measured via the Bayes factor of z-scores.)

The connection with our own work is that the construction of discrepancy measures proposed in this paper could be added to our already large collection of summary statistics to check to potential impact in model comparison, i.e. for a significant contribution to the random forest nodes.  Conversely, the most significant summary statistics could then be tested as discrepancy measures. Or, more in tune with our Series B paper on the proper selection of summary variables, the distribution of those discrepancy measures could be compared across potential models. Assuming this does not take too much computing power…

delayed acceptance with prefetching

Posted in Books, Kids, Statistics, Travel, University life with tags , , , , , , , on June 12, 2014 by xi'an

In a somewhat desperate rush (started upon my return from Iceland and terminated on my return from Edinburgh), Marco Banterle, Clara Grazian and I managed to complete and submit our paper by last Friday evening… It is now arXived as well. The full title of the paper is Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching and the idea behind the generic acceleration is (a) to divide the acceptance step into parts, towards a major reduction in computing time that outranks the corresponding reduction in acceptance probability and (b) to exploit this division to build a dynamic prefetching algorithm. The division is to break the prior x likelihood target into a product such that some terms are much cheaper than others. Or equivalently to represent the acceptance-rejection ratio in the Metropolis-Hastings algorithm as

\dfrac{\pi(\theta)\,q(\theta,\eta)}{\pi(\eta)q(\eta,\theta)} = \prod_{k=1}^d \rho_k(\eta,\theta)

again with significant differences in the computing cost of those terms. Indeed, this division can be exploited by checking for each term sequentially, in the sense that the overall acceptance probability

\prod_{k=1}^d \min\left\{\rho_k(\eta,\theta),1\right\}

is associated with the right (posterior) target! This lemma can be directly checked via the detailed balance condition, but it is also a consequence of a 2005 paper by Andrès Christen and Colin Fox on using approximate transition densities (with the same idea of gaining time: in case of an early rejection, the exact target needs not be computed). While the purpose of the recent [commented] paper by Doucet et al. is fundamentally orthogonal to ours, a special case of this decomposition of the acceptance step in the Metropolis–Hastings algorithm can be found therein. The division of the likelihood into parts also allows for a precomputation of the target solely based on a subsample, hence gaining time and allowing for a natural prefetching version, following recent developments in this direction. (Discussed on the ‘Og.) We study the novel method within two realistic environments, the fi rst one made of logistic regression targets using benchmarks found in the earlier prefetching literature and a second one handling an original analysis of a parametric mixture model via genuine Jeffreys priors. [As I made preliminary notes along those weeks using the 'Og as a notebook, several posts on the coming days will elaborate on the above.]

finite mixture models [book review]

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , on February 17, 2014 by xi'an

Here is a review of Finite Mixture Models (2000) by Geoff McLachlan & David Peel that I wrote aeons ago (circa 1999), supposedly for JASA, which lost first the files and second the will to publish it. As I was working with my student today, I mentioned the book to her and decided to publish it here, if only because I think the book deserved a positive review, even after all those years! (Since then, Sylvia Frühwirth-Schnatter published Finite Mixture and Markov Switching Models (2004), which is closer to my perspective on the topic and that I would more naturally recommend.)

Mixture modeling, that is, the use of weighted sums of standard distributions as in

\sum_{i=1}^k p_i f({\mathbf y};{\mathbf \theta}_i)\,,

is a widespread and increasingly used technique to overcome the rigidity of standard parametric distributions such as f(y;θ), while retaining a parametric nature, as exposed in the introduction of my JASA review to Böhning’s (1998) book on non-parametric mixture estimation (Robert, 2000). This review pointed out that, while there are many books available on the topic of mixture estimation, the unsurpassed reference remained the book by Titterington, Smith and Makov (1985)  [hereafter TSM]. I also suggested that a new edition of TSM would be quite timely, given the methodological and computational advances that took place in the past 15 years: while it remains unclear whether or not this new edition will ever take place, the book by McLachlan and Peel gives an enjoyable and fairly exhaustive update on the topic, incorporating the most recent advances on mixtures and some related models.

Geoff McLachlan has been a major actor in the field for at least 25 years, through papers, software—the book concludes with a review of existing software—and books: McLachlan (1992), McLachlan and Basford (1988), and McLachlan and Krishnan (1997). I refer the reader to Lindsay (1989) for a review of the second book, which is a forerunner of, and has much in common with, the present book. Continue reading

Importance sampling schemes for evidence approximation in mixture models

Posted in R, Statistics, University life with tags , , , , , , , , , on November 27, 2013 by xi'an

boximpJeong Eun (Kate) Lee and I completed this paper, “Importance sampling schemes for evidence approximation in mixture models“, now posted on arXiv. (With the customary one-day lag for posting, making me bemoan the days of yore when arXiv would give a definitive arXiv number at the time of submission.) Kate came twice to Paris in the past years to work with me on this evaluation of Chib’s original marginal likelihood estimate (also called the candidate formula by Julian Besag). And on the improvement proposed by Berkhof, van Mechelen, and Gelman (2003), based on averaging over all permutations, idea that we rediscovered in an earlier paper with Jean-Michel Marin. (And that Andrew seemed to have completely forgotten. Despite being the very first one to publish [in English] a paper on a Gibbs sampler for mixtures.) Given that this averaging can get quite costly, we propose a preliminary step to reduce the number of relevant permutations to be considered in the averaging, removing far-away modes that do not contribute to the Rao-Blackwell estimate and called dual importance sampling. We also considered modelling the posterior as a product of k-component mixtures on the components, following a vague idea I had in the back of my mind for many years, but it did not help. In the above boxplot comparison of estimators, the marginal likelihood estimators are

  1. Chib’s method using T = 5000 samples with a permutation correction by multiplying by k!.
  2. Chib’s method (1), using T = 5000 samples which are randomly permuted.
  3. Importance sampling estimate (7), using the maximum likelihood estimate (MLE) of the latents as centre.
  4. Dual importance sampling using q in (8).
  5. Dual importance sampling using an approximate in (14).
  6. Bridge sampling (3). Here, label switching is imposed in hyperparameters.
Follow

Get every new post delivered to your Inbox.

Join 604 other followers