Bayesian Fall school in La Rochelle

The French agronomy research institute INRA is organising a Fall school in La Rochelle, Nov. 28 – Dec. 02, on Bayesian methods, oriented towards the applications in food sciences, environmental sciences, and biology. The provisional program (in French) is

■ Initiation aux outils informatiques R et WinBUGS (TP et réalisation de projets sur ordinateur)
■ Rappels en probabilité et initiation aux modèles graphiques
■ Introduction de la démarche bayésienne à travers des exemples simples
■ Quelques aspects et anecdotes sur l’histoire passée et récente de la statistique bayésienne
■ Estimation des distributions a posteriori à l’aide de méthodes numériques (MCMC etc.)
■ Evaluation et sélection de modèles en statistique bayésienne
■ Distributions a priori et élicitation
■ Exposés prospectifs sur les méthodes bayésiennes

The instructors will be Sophie Ancelet, Chantal Guihenneuc-Jouyaux, and Jean-Michel Marin. There are still a few places available and the registration deadline is June 30. (The above picture is a painting by Henri-Paul Motte of Richelieu during the year long siege of La Rochelle in 1628, painting that was included in my primary school history book and that I then found fascinating…)

2 Responses to “Bayesian Fall school in La Rochelle”

  1. MUY INTERESANTE.
    ME GUSTARIA RECIBIR MAS NOTICIAS.
    GRACIAS,
    JORGE
    VIVO EN COLOMBIA.

  2. In English, “Bayesian Fall” reads like the decline of Bayes, but such rumors of its demise are probably greatly exaggerated. :)

    Your choice of painting is not only totally apropos, but breathtaking: somehow passive and action-packed at the same time. Marvelous!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: