improper priors, incorporated

If a statistical procedure is to be judged by a criterion such as a conventional loss function (…) we should not expect optimal results from a probabilistic theory that demands multiple observations and multiple parameters.” P. McCullagh & H. Han

Peter McCullagh and Han Han have just published in the Annals of Statistics a paper on Bayes’ theorem for improper mixtures. This is a fascinating piece of work, even though some parts do elude me… The authors indeed propose a framework based on Kingman’s Poisson point processes that allow to include (countable) improper priors in a coherent probabilistic framework. This framework requires the definition of a test set A in the sampling space, the observations being then the events Y∩ A, Y being an infinite random set when the prior is infinite. It is therefore complicated to perceive this representation in a genuine Bayesian framework, i.e. for a single observation, corresponding to a single parameter value. In that sense it seems closer to the original empirical Bayes, à la Robbins.

An improper mixture is designed for a generic class of problems, not necessarily related to one another scientifically, but all having the same mathematical structure.” P. McCullagh & H. Han

The paper thus misses in my opinion a clear link with the design of improper priors. And it does not offer a resolution of the  improper prior Bayes factor conundrum. However, it provides a perfectly valid environment for working with improper priors. For instance, the final section on the marginalisation “paradoxes” is illuminating in this respect as it does not demand  using a limit of proper priors.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.