probit posterior mean

In a recent arXiv report, Yuzo Maruyma shows that the posterior expectation of a probit parameter has an almost closed form (under a flat prior), namely

\mathbb{E}[\beta|X,y] = (X^TX)^{-1} X^T\{2\text{diag}(y)-I_n\}\omega(X,y)

where ω involves the integration of two quadratic forms over the n-dimensional unit sphere. Although this does not help directly with the MCMC derivation of the full posterior, this is an interesting lemma which shows a closed proximity with the standard least square estimate in linear regression.

One Response to “probit posterior mean”

  1. […] probit posterior mean Share this:PrintFacebookEmailTwitterLinkedInDiggRedditStumbleUponLike this:LikeBe the first to like this post. […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.