[not] Le Monde puzzle (6)

After posting the question on dinner table permutations on StackExchange (mathematics), I got almost instantaneously a reply that the right number was six, linking to the Covering chapter by Gordan and Stinson, taken from the second edition of Handbook of Combinatorial Designs. If I understand correctly this terse coverage that reminds me of Gradshteyn and Ryzhik’s monumental Table of Integrals, Series and Products, my question is connected to the covering number C(20,5,2), which is equal to 21 according to Table 1.33 of the above chapter. This is the minimum number of blocks such that every pair of points occurs in at least one block (element) of the collection of subsets of size 5 (the tables across courses). Now, in my problem, the interesting coverage is a resolvable coverage, i.e., a collection of tables that “can be partitioned into parallel classes, each of which consists of v/k[=4] disjoint blocks” (Definition 1.43). Then the number of parallel classes is r(4,5)=6, as provided by hardmath. Now the remaining question is how to build the resolvable 2-(20,5,1) covering, i.e. the table plans across the six courses… This may be related to a direct proof as to why a five course dinner does not work.

One Response to “[not] Le Monde puzzle (6)”

  1. Now a specific table ordering has been posted on StackExchange. Terrific! I hope I will find a few minutes to run my own simulated annealing as I had planned to do over the weekend….

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: