top model choice week (#2)
Following Ed George (Wharton) and Feng Liang (University of Illinois at Urbana-Champaign) talks today in Dauphine, Natalia Bochkina (University of Edinburgh) will give a talk on Thursday, June 20, at 2pm in Room 18 at ENSAE (Malakoff) [not Dauphine!]. Here is her abstract:
2 am: Simultaneous local and global adaptivity of Bayesian wavelet estimators in nonparametric regression by Natalia Bochkina
We consider wavelet estimators in the context of nonparametric regression, with the aim of finding estimators that simultaneously achieve the local and global adaptive minimax rate of convergence. It is known that one estimator – James-Stein block thresholding estimator of T.Cai (2008) – achieves simultaneously both optimal rates of convergence but over a limited set of Besov spaces; in particular, over the sets of spatially inhomogeneous functions (with 1≤ p<2) the upper bound on the global rate of this estimator is slower than the optimal minimax rate.
Another possible candidate to achieve both rates of convergence simultaneously is the Empirical Bayes estimator of Johnstone and Silverman (2005) which is an adaptive estimator that achieves the global minimax rate over a wide rage of Besov spaces and Besov balls. The maximum marginal likelihood approach is used to estimate the hyperparameters, and it can be interpreted as a Bayesian estimator with a uniform prior. We show that it also achieves the adaptive local minimax rate over all Besov spaces, and hence it does indeed achieve both local and global rates of convergence simultaneously over Besov spaces. We also give an example of how it works in practice.
Leave a Reply