On the use of marginal posteriors in marginal likelihood estimation via importance-sampling

Perrakis, Ntzoufras, and Tsionas just arXived a paper on marginal likelihood (evidence) approximation (with the above title). The idea behind the paper is to base importance sampling for the evidence on simulations from the product of the (block) marginal posterior distributions. Those simulations can be directly derived from an MCMC output by randomly permuting the components. The only critical issue is to find good approximations to the marginal posterior densities. This is handled in the paper either by normal approximations or by Rao-Blackwell estimates. the latter being rather costly since one importance weight involves B.L computations, where B is the number of blocks and L the number of samples used in the Rao-Blackwell estimates. The time factor does not seem to be included in the comparison studies run by the authors, although it would seem necessary when comparing scenarii.

After a standard regression example (that did not include Chib’s solution in the comparison), the paper considers  2- and 3-component mixtures. The discussion centres around label switching (of course) and the deficiencies of Chib’s solution against the current method and Neal’s reference. The study does not include averaging Chib’s solution over permutations as in Berkoff et al. (2003) and Marin et al. (2005), an approach that does eliminate the bias. Especially for a small number of components. Instead, the authors stick to the log(k!) correction, despite it being known for being quite unreliable (depending on the amount of overlap between modes). The final example is Diggle et al. (1995) longitudinal Poisson regression with random effects on epileptic patients. The appeal of this model is the unavailability of the integrated likelihood which implies either estimating it by Rao-Blackwellisation or including the 58 latent variables in the analysis.  (There is no comparison with other methods.)

As a side note, among the many references provided by this paper, I did not find trace of Skilling’s nested sampling or of safe harmonic means (as exposed in our own survey on the topic).

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.