efficient exploration of multi-modal posterior distributions

The title of this recent arXival had potential appeal, however the proposal ends up being rather straightforward and hence  anti-climactic! The paper by Hu, Hendry and Heng proposes to run a mixture of proposals centred at the various modes of  the target for an efficient exploration. This is a correct MCMC algorithm, granted!, but the requirement to know beforehand all the modes to be explored is self-defeating, since the major issue with MCMC is about modes that are  omitted from the exploration and remain undetected throughout the simulation… As provided, this is a standard MCMC algorithm with no adaptive feature and I would rather suggest our population Monte Carlo version, given the available information. Another connection with population Monte Carlo is that I think the performances would improve by Rao-Blackwellising the acceptance rate, i.e. removing the conditioning on the (ancillary) component of the index. For PMC we proved that using the mixture proposal in the ratio led to an ideally minimal variance estimate and I do not see why randomising the acceptance ratio in the current case would bring any improvement.

3 Responses to “efficient exploration of multi-modal posterior distributions”

  1. I wasn’t impressed either for much the same reasons; IMO the proposal is like the limiting case of autoregressive chains (Section 2.3.5) and their mixtures (also Section 2.4) described by Tierney (1994): limiting in the sense that the autoregressive part goes to zero!
    http://astrostatistics.wordpress.com/2014/08/19/mixed-mcmc/

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s