self-healing umbrella sampling

Ten days ago, Gersende Fort, Benjamin Jourdain, Tony Lelièvre, and Gabriel Stoltz arXived a study about an adaptive umbrella sampler that can be re-interpreted as a Wang-Landau algorithm, if not the most efficient version of the latter. This reminded me very much of the workshop we had all together in Edinburgh last June. And even more of the focus of the molecular dynamics talks in this same ICMS workshop about accelerating the MCMC exploration of multimodal targets. The self-healing aspect of the sampler is to adapt to the multimodal structure thanks to a partition that defines a biased sampling scheme spending time in each set of the partition in a frequency proportional to weights. While the optimal weights are the weights of the sets against the target distribution (are they truly optimal?! I would have thought lifting low density regions, i.e., marshes, could improve the mixing of the chain for a given proposal), those are unknown and they need to be estimated by an adaptive scheme that makes staying in a given set the less desirable the more one has visited it. By increasing the inverse weight of a given set by a factor each time it is visited. Which sounds indeed like Wang-Landau. The plus side of the self-healing umbrella sampler is that it only depends on a scale γ (and on the partition). Besides converging to the right weights of course. The downside is that it does not reach the most efficient convergence, since the adaptivity weight decreases in 1/n rather than 1/√n.

Note that the paper contains a massive experimental side where the authors checked the impact of various parameters by Monte Carlo studies of estimators involving more than a billion iterations. Apparently repeated a large number of times.

The next step in adaptivity should be about the adaptive determination of the partition, hoping for a robustness against the dimension of the space. Which may be unreachable if I judge by the apparent deceleration of the method when the number of terms in the partition increases.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.