differences between Bayes factors and normalised maximum likelihood

A recent arXival by Heck, Wagenmaker and Morey attracted my attention: Three Qualitative Differences Between Bayes Factors and Normalized Maximum Likelihood, as it provides an analysis of the differences between Bayesian analysis and Rissanen’s Optimal Estimation of Parameters that I reviewed a while ago. As detailed in this review, I had difficulties with considering the normalised likelihood

p(x|\hat\theta_x) \big/ \int_\mathcal{X} p(y|\hat\theta_y)\,\text{d}y

as the relevant quantity. One reason being that the distribution does not make experimental sense: for instance, how can one simulate from this distribution? [I mean, when considering only the original distribution.] Working with the simple binomial B(n,θ) model, the authors show the quantity corresponding to the posterior probability may be constant for most of the data values, produces a different upper bound and hence a different penalty of model complexity, and may differ in conclusion for some observations. Which means that the apparent proximity to using a Jeffreys prior and Rissanen’s alternative does not go all the way. While it is a short note and only focussed on producing an illustration in the Binomial case, I find it interesting that researchers investigate the Bayesian nature (vs. artifice!) of this approach…

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s