## nested sampling with a test

**O**n my way back from Warwick, I read through a couple preprints, including this statistical test for nested sampling algorithms by Johannes Buchner. As it happens, I had already read and commented it in July! However, without the slightest memory of it (sad, isn’t it?!), I focussed this time much more on the modification proposed to MultiNest than on the test itself, which is in fact a Kolmogorov-Smirnov test applied to a specific target function.

Indeed, when reading the proposed modification of Buchner, I thought of a modification to the modification that sounded more appealing. Without getting back to defining nested sampling in detail, this algorithm follows a swarm of N particles within upper-level sets of the likelihood surface, each step requiring a new simulation above the current value of the likelihood. The remark that set me on this time was that we should exploit the fact that (N-1) particles were already available within this level set. And uniformly distributed herein. Therefore this particle cloud should be exploited as much as possible to return yet another particle distributed just as uniformly as the other ones (!). Buchner proposes an alternative to MultiNest based on a randomised version of the maximal distance to a neighbour and a ball centre picked at random (but not uniformly). But it would be just as feasible to draw a distance from the empirical cdf of the distances to the nearest neighbours or to the k-nearest neighbours. With some possible calibration of k. And somewhat more accurate, because this distribution represents the repartition of the particle within the upper-level set. Although I looked at it briefly in the [sluggish] metro from Roissy airport, I could not figure out a way to account for the additional point to be included in the (N-1) existing particles. That is, how to deform the empirical cdf of those distances to account for an additional point. Unless one included the just-removed particle, which is at the boundary of this upper-level set. (Or rather, which defines the boundary of this upper-level set.) I have no clear intuition as to whether or not this would amount to a uniform generation over the true upper-level set. But simulating from the distance distribution would remove (I think) the clustering effect mentioned by Buchner.

“Other priors can be mapped [into the uniform prior over the unit hypercube] using the inverse of the cumulative prior distribution.”

Hence another illustration of the addictive features of nested sampling! Each time I get back to this notion, a new understanding or reinterpretation comes to mind. In any case, an equally endless source of projects for Master students. (Not that I agree with the above quote, mind you!)

December 8, 2014 at 11:57 am

It might be worthwhile to expand at some point on your non-agreement with the given quote for the benefit of an astronomical audience where the unit cube is a.e. taken as the template for any (non-discrete) prior over a finite parameter space.

December 5, 2014 at 4:28 pm

What an honour to be mentioned not once, but twice on your blog!

December 7, 2014 at 11:34 am

Alas, it is also a sad illustration of my vanishing long-term memory…!