aperiodic Gibbs sampler

limboA question on Cross Validated led me to realise I had never truly considered the issue of periodic Gibbs samplers! In MCMC, non-aperiodic chains are a minor nuisance in that the skeleton trick of randomly subsampling the Markov chain leads to a aperiodic Markov chain. (The picture relates to the skeleton!)  Intuitively, while the systematic Gibbs sampler has a tendency to non-reversibility, it seems difficult to imagine a sequence of full conditionals that would force the chain away from the current value..!In the discrete case, given that the current state of the Markov chain has positive probability for the target distribution, the conditional probabilities are all positive as well and hence the Markov chain can stay at its current value after one Gibbs cycle, with positive probabilities, which means strong aperiodicity. In the continuous case, a similar argument applies by considering a neighbourhood of the current value. (Incidentally, the same person asked a question about the absolute continuity of the Gibbs kernel. Being confused by our chapter on the topic!!!)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s