convergence for non-Markovian simulated AAs

view from the new court, St John's , Cambridge, Jan. 27, 2012Mathieu Gerber (formerly CREST) and Luke Bornn have arXived a paper on the almost sure convergence of simulated annealing algorithms when using a non-Markovian sequence that can be in the limiting case completely deterministic and hence use quasi-Monte Carlo sequences. The paper extends the earlier Gerber and Bornn (2015) that I missed. While the paper is highly technical, it shows that under some conditions a sequence of time-varying kernels can be used to reach the maximum of an objective function. With my limited experience with simulated annealing I find this notion of non-iid or even non-random both worth investigating and somewhat unsurprising from a practitioner’s view in that modifying a standard simulated annealing algorithm with steps depending on the entire past of the sequence usually produces better performances.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.