## Le Monde puzzle [#954]

**A** square Le Monde mathematical puzzle:

Given a triplet (a,b,c) of integers, with a<b<c, it satisfies the S property when a+b, a+c, b+c, a+b+c are perfect squares such that a+c, b+c, and a+b+c are consecutive squares. For a given a, is it always possible to find a pair (b,c) such (a,b,c) satisfies S? Can you find the triplet (a,b,c) that produces the sum a+b+c closest to 1000?

**T**his is a rather interesting challenge and a brute force resolution does not produce interesting results. For instance, using the function is.whole from the package Rmpfr, the R functions

ess <- function(a,b,k){ #assumes a<b<k ess=is.whole(sqrt(a+b))& is.whole(sqrt(b+k))& is.whole(sqrt(a+k))& is.whole(sqrt(a+b+k)) mezo=is.whole(sqrt(c((a+k+1):(b+k-1),(b+k+1):(a+b+k-1)))) return(ess&(sum(mezo==0))) }

and

quest1<-function(a){ b=a+1 while (b<1000*a){ if (is.whole(sqrt(a+b))){ k=b+1 while (k<100*b){ if (is.whole(sqrt(a+k))&is.whole(b+k)) if (ess(a,b,k)) break() k=k+1}} b=b+1} return(c(a,b,k)) }

do not return any solution when a=1,2,3,4,5

Looking at the property that a+b,a+c,b+c, and a+b+c are perfect squares α²,β²,γ², and δ². This implies that

a=(δ+γ)(δ-γ), b=(δ+β)(δ-β), and c=(δ+α)(δ-α)

with 1<α<β<γ<δ. If we assume β²,γ², and δ² consecutive squares, this means β=γ-1 and δ=γ+1, hence

a=2γ+1, b=4γ, and c=(γ+1+α)(γ+1-α)

which leads to only two terms to examine. Hence writing another R function

abc=function(al,ga){ a=2*ga+1 b=4*ga k=(ga+al+1)*(ga-al+1) return(c(a,b,k))}

and running a check for the smallest values of α and γ leads to the few solutions available:

> for (ga in 3:1e4) for(al in 1:(ga-2)) if (ess(abc(al,ga))) print(abc(al,ga)) [1] 41 80 41 320 [1] 57 112 672 [1] 97 192 2112 [1] 121 240 3360 [1] 177 352 7392 [1] 209 416 10400 [1] 281 560 19040 [1] 321 640 24960 [1] 409 816 40800 [1] 457 912 51072

March 28, 2016 at 9:04 pm

It strikes me that this is a situation where my (shameless plug) ktsolver package might help. While ktsolver is designed to back-solve a general set of equations, I would expect in the case of all-integer equations like these it should converge to the exact solution. If I remember :-) , I’ll try to try putting your equations into ktsolver myself soon.

March 27, 2016 at 12:54 am

misspelled, package “Rpmfr” name, should be “Rmpfr”

March 29, 2016 at 2:53 pm

Thanks, it explains why the R code could not run any longer!!!

March 25, 2016 at 12:33 pm

Your results do not satisfy the requirement a<b<c (due to a minor error)

March 25, 2016 at 6:39 pm

Thanks, I indeed switched the perfect squares! Now stand corrected.