## Le Monde puzzle [#960] An arithmetic Le Monde mathematical puzzle:

Given an integer k>1, consider the sequence defined by F(1)=1+1 mod k, F²(1)=F(1)+2 mod k, F³(1)=F²(1)+3 mod k, &tc. [With this notation, F is not necessarily a function.] For which value of k is the sequence the entire {0,1,…,k-1} set?

This leads to an easy brute force resolution, for instance writing the R function

```crkl<-function(k) return(unique(cumsum(1:(2*k))%%k))
```

where 2k is a sufficient substitute for ∞. Then the cases where the successive images of 1 visit the entire set {0,1,…,k-1} are given by

```> for (i in 2:550) if (length(crkl(i))==i) print(i)
 2
 4
 8
 16
 32
 64
 128
 256
 512
```

which suspiciously looks like the result that only the powers of 2 k=2,2²,2³,… lead to a complete exploration of the set {0,1,…,k-1}. Checking a few series in the plane back from Warwick, I quickly found that when k is odd, (1) the sequence is of period k and (2) there is symmetry in the sequence, which means it only takes (k-1)/2 values. For k even, there is a more complicated symmetry, with the sequence being of period 2k, symmetric around its two middle values, and taking the values 1,2,..,1+k(2k+1)/4,..,1+k(k+1)/2. Those values cannot cover the set {0,1,…,k-1} if two are equal, which means an i(i+1)/2 congruent to zero modulo k, hence equal to k. This is clearly impossible when k is a power of 2 because i and i+1 cannot both divide a power of 2. I waited for the published solution as of yesterday’s and the complete argument was to show that when N=2p, the corresponding sequence [for N] is made (modulo p) of the sequence for p plus the same sequence translated by p. The one for N is complete only if the one for p is complete, which by recursion eliminates all cases but the powers of 2…

This site uses Akismet to reduce spam. Learn how your comment data is processed.