same data – different models – different answers

An interesting question from a reader of the Bayesian Choice came out on X validated last week. It was about Laplace’s succession rule, which I found somewhat over-used, but it was nonetheless interesting because the question was about the discrepancy of the “non-informative” answers derived from two models applied to the data: an Hypergeometric distribution in the Bayesian Choice and a Binomial on Wikipedia. The originator of the question had trouble with the difference between those two “non-informative” answers as she or he believed that there was a single non-informative principle that should lead to a unique answer. This does not hold, even when following a reference prior principle like Jeffreys’ invariant rule or Jaynes’ maximum entropy tenets. For instance, the Jeffreys priors associated with a Binomial and a Negative Binomial distributions differ. And even less when considering that  there is no unity in reaching those reference priors. (Not even mentioning the issue of the reference dominating measure for the definition of the entropy.) This led to an informative debate, which is the point of X validated.

On a completely unrelated topic, the survey ship looking for the black boxes of the crashed EgyptAir plane is called the Laplace.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s