## another riddle

A riddle from The Riddler, a few weeks ago, to ponder while waiting for Godot another plane:

Consider a game played with a coin, between you and a friend, on the integer line. You are assigned a negative integer -X, and your friend is assigned a positive integer, +Y. A marker is placed at zero on the number line. Then the coin is repeatedly flipped. Every time the coin lands heads, the marker is moved one integer in a positive direction. Every time the coin lands tails, the marker moves one integer in a negative direction. You win if the coin reaches -X first, while your friend wins if the coin reaches +Y first.

What is the expected number of coin flips in a complete game?

Not much to say there since this is the classical Feller’s gambler ruin problem that I used to analyse in my practical classes at Polytechnique. The winning probability is X/(X+Y). Assuming the coin is fair. And the distribution of the hitting times (win or loose) is easily analysed by the reflection principle. But a simpler recursion shows that the expected number of steps till hitting one boundary is XY, which is rather surprising as a multiplicative formula.

### One Response to “another riddle”

1. The multiplicative formula perhaps could be guessed, if you take either X or Y or infinity. Since in this case, one must have the expected time to be infinity, due to the recurrence of the random walk.

This site uses Akismet to reduce spam. Learn how your comment data is processed.