ABC by subset simulation
Last week, Vakilzadeh, Beck and Abrahamsson arXived a paper entitled “Using Approximate Bayesian Computation by Subset Simulation for Efficient Posterior Assessment of Dynamic State-Space Model Classes”. It follows an earlier paper by Beck and co-authors on ABC by subset simulation, paper that I did not read. The model of interest is a hidden Markov model with continuous components and covariates (input), e.g. a stochastic volatility model. There is however a catch in the definition of the model, namely that the observable part of the HMM includes an extra measurement error term linked with the tolerance level of the ABC algorithm. Error term that is dependent across time, the vector of errors being within a ball of radius ε. This reminds me of noisy ABC, obviously (and as acknowledged by the authors), but also of some ABC developments of Ajay Jasra and co-authors. Indeed, as in those papers, Vakilzadeh et al. use the raw data sequence to compute their tolerance neighbourhoods, which obviously bypasses the selection of a summary statistic [vector] but also may drown signal under noise for long enough series.
“In this study, we show that formulating a dynamical system as a general hierarchical state-space model enables us to independently estimate the model evidence for each model class.”
Subset simulation is a nested technique that produces a sequence of nested balls (and related tolerances) such that the conditional probability to be in the next ball given the previous one remains large enough. Requiring a new round of simulation each time. This is somewhat reminding me of nested sampling, even though the two methods differ. For subset simulation, estimating the level probabilities means that there also exists a converging (and even unbiased!) estimator for the evidence associated with different tolerance levels. Which is not a particularly natural object unless one wants to turn it into a tolerance selection principle, which would be quite a novel perspective. But not one adopted in the paper, seemingly. Given that the application section truly compares models I must have missed something there. (Blame the long flight from San Francisco to Sydney!) Interestingly, the different models as in Table 4 relate to different tolerance levels, which may be an hindrance for the overall validation of the method.
I find the subsequent part on getting rid of uncertain prediction error model parameters of lesser [personal] interest as it essentially replaces the marginal posterior on the parameters of interest by a BIC approximation, with the unsurprising conclusion that “the prior distribution of the nuisance parameter cancels out”.
Leave a Reply