non-identifiability in Venezia

Last Wednesday, I attended a seminar by T. Kitagawa at the economics seminar of the University Ca’ Foscari, in Venice, which was about (uncertain) identifiability and a sort of meta-Bayesian approach to the problem. Just to give an intuition about the setting, a toy example is a simultaneous equation model Ax=ξ, where x and ξ are two-dimensional vectors, ξ being a standard bivariate Normal noise. In that case, A is not completely identifiable. The argument in the talk (and the paper) is that the common Bayesian answer that sets a prior on the non-identifiable part (which is an orthogonal matrix in the current setting) is debatable as it impacts inference on the non-identifiable parts, even in the long run. Which seems fine from my viewpoint. The authors propose to instead consider the range of possible priors that are compatible with the set restrictions on the non-identifiable parts and to introduce a mixture between a regular prior on the whole parameter A and this collection of priors, which can be seen as a set-valued prior although this does not fit within the Bayesian framework in my opinion. Once this mixture is constructed, a formal posterior weight on the regular prior can be derived. As well as a range of posterior values for all quantities of interest. While this approach connects with imprecise probabilities à la Walley (?) and links with robust Bayesian studies of the 1980’s, I always have difficulties with the global setting of such models, which do not come under criticism while being inadequate. (Of course, there are many more things I do not understand in econometrics!)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s