## on Dutch book arguments

“Reality is not always probable, or likely.”― Jorge Luis Borges

**A**s I am supposed to discuss Teddy Seidenfeld‘s talk at the Bayes, Fiducial and Frequentist conference in Harvard today [the snow happened last time!], I started last week [while driving to Wales] reading some related papers of his. Which is great as I had never managed to get through the Dutch book arguments, including those in Jim’s book.

The paper by Mark Schervish, Teddy Seidenfeld, and Jay Kadane is defining *coherence* as the inability to bet against the predictive statements based on the procedure. A definition that sounds like a self-fulfilling prophecy to me as it involves a probability measure over the parameter space. Furthermore, the notion of turning inference, which aims at scientific validation, into a leisure, no-added-value, and somewhat ethically dodgy like gambling, does not agree with my notion of a validation for a theory. That is, not as a compelling reason for adopting a Bayesian approach. Not that I have suddenly switched to the other [darker] side, but I do not feel those arguments helping in any way, because of this dodgy image associated with gambling. (Pardon my French, but each time I read about *escrows*, I think of *escrocs*, or *crooks*, which reinforces this image! Actually, this name derives from the Old French *escroue*, but the modern meaning of *écroué* is sent to jail, which brings us back to the same feeling…)

Furthermore, it sounds like both a weak notion, since it implies an almost sure loss for the bookmaker, plus coherency holds for *any* prior distribution, including Dirac masses!, and a frequentist one, in that it looks at all possible values of the parameter (in a statistical framework). It also turns errors into monetary losses, taking them at face value. Which sounds also very formal to me.

But the most fundamental problem I have with this approach is that, from a Bayesian perspective, it does not bring any evaluation or ranking of priors, and in particular does not help in selecting or eliminating some. By behaving like a minimax principle, it does not condition on the data and hence does not evaluate the predictive properties of the model in terms of the data, e.g. by comparing pseudo-data with real data.

While I see no reason to argue in favour of p-values or minimax decision rules, I am at a loss in understanding the examples in How to not gamble if you must. In the first case, i.e., when dismissing the α-level most powerful test in the simple vs. simple hypothesis testing case, the argument (in Example 4) starts from the classical (Neyman-Pearsonist) statistician favouring the 0.05-level test over others. Which sounds absurd, as this level corresponds to a given loss function, which cannot be compared with another loss function. Even though the authors chose to rephrase the dilemma in terms of a single 0-1 loss function and then turn the classical solution into the choice of an implicit variance-dependent prior. Plus force the poor Pearsonist to make a wager represented by the risk difference. The whole sequence of choices sounds both very convoluted and far away from the usual practice of a classical statistician… Similarly, when attacking [in Section 5.2] the minimax estimator in the Bernoulli case (for the corresponding proper prior depending on the sample size n), this minimax estimator is admissible under quadratic loss and still a Dutch book argument applies, which in my opinion definitely argues *against* the Dutch book reasoning. The way to produce such a domination result is to mix two Bernoulli estimation problems for two different sample sizes but the *same* parameter value, in which case there exist [other] choices of Beta priors and a convex combination of the risks functions that lead to this domination. But this example [Example 6] mostly exposes the artificial nature of the argument: when estimating the *very same* probability θ, what is the relevance of adding the risks or errors resulting from using two estimators for two different sample sizes. Of the *very same* probability θ. I insist on the *very same* because when instead estimating two [independent] values of θ, there cannot be a Stein effect for the Bernoulli probability estimation problem, that is, any aggregation of admissible estimators remains admissible. (And yes it definitely sounds like an exercise in frequentist decision theory!)

## Leave a Reply