principles or unprincipled?!

A lively and wide-ranging discussion during the Bayes, Fiducial, Frequentist conference was about whether or not we should look for principles. Someone mentioned Terry Speed (2016) claim that it does not help statistics in being principled. Against being efficient. Which gets quite close in my opinion to arguing in favour of a no-U-turn move to machine learning—which requires a significant amount of data to reach this efficiency, as Xiao-Li Meng mentioned—. The debate brought me back to my current running or droning argument on the need to accommodate [more] the difference between models and reality. Not throwing away statistics and models altogether, but developing assessments that are not fully chained to those models. While keeping probabilistic models to handle uncertainty. One pessimistic conclusion I drew from the discussion is that while we [as academic statisticians] may set principles and even teach our students how to run principled and ethical statistical analyses, there is not much we can do about the daily practice of users of statistics…

One Response to “principles or unprincipled?!”

  1. Adhockeries are hard to die…

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s