fast ε-free ABC
Last Fall, George Papamakarios and Iain Murray from Edinburgh arXived an ABC paper on fast ε-free inference on simulation models with Bayesian conditional density estimation, paper that I missed. The idea there is to approximate the posterior density by maximising the likelihood associated with a parameterised family of distributions on θ, conditional on the associated x. The data being then the ABC reference table. The family chosen there is a mixture of K Gaussian components, which parameters are then estimated by a (Bayesian) neural network using x as input and θ as output. The parameter values are simulated from an adaptive proposal that aims at approximating the posterior better and better. As in population Monte Carlo, actually. Except for the neural network part, which I fail to understand why it makes a significant improvement when compared with EM solutions. The overall difficulty with this approach is that I do not see a way out of the curse of dimensionality: when the dimension of θ increases, the approximation to the posterior distribution of θ does deteriorate, even in the best of cases, as any other non-parametric resolution. It would have been of (further) interest to see a comparison with a most rudimentary approach, namely the one we proposed based on empirical likelihoods.
Leave a Reply