The Seven Pillars of Statistical Wisdom [book review]

I remember quite well attending the ASA Presidential address of Stephen Stigler at JSM 2014, Boston, on the seven pillars of statistical wisdom. In connection with T.E. Lawrence’s 1926 book. Itself in connection with Proverbs IX:1. Unfortunately wrongly translated as seven pillars rather than seven sages.

As pointed out in the Acknowledgements section, the book came prior to the address by several years. I found it immensely enjoyable, first for putting the field in a (historical and) coherent perspective through those seven pillars, second for exposing new facts and curios about the history of statistics, third because of a literary style one would wish to see more often in scholarly texts and of a most pleasant design (and the list of reasons could go on for quite a while, one being the several references to Jorge Luis Borges!). But the main reason is to highlight the unified nature of Statistics and the reasons why it does not constitute a subfield of either Mathematics or Computer Science. In these days where centrifugal forces threaten to split the field into seven or more disciplines, the message is welcome and urgent.

Here are Stephen’s pillars (some comments being already there in the post I wrote after the address):

  1. aggregation, which leads to gain information by throwing away information, aka the sufficiency principle. One (of several) remarkable story in this section is the attempt by Francis Galton, never lacking in imagination, to visualise the average man or woman by superimposing the pictures of several people of a given group. In 1870!
  2. information accumulating at the √n rate, aka precision of statistical estimates, aka CLT confidence [quoting  de Moivre at the core of this discovery]. Another nice story is Newton’s wardenship of the English Mint, with musing about [his] potential exploiting this concentration to cheat the Mint and remain undetected!
  3. likelihood as the right calibration of the amount of information brought by a dataset [including Bayes’ essay as an answer to Hume and Laplace’s tests] and by Fisher in possible the most impressive single-handed advance in our field;
  4. intercomparison [i.e. scaling procedures from variability within the data, sample variation], from Student’s [a.k.a., Gosset‘s] t-test, better understood and advertised by Fisher than by the author, and eventually leading to the bootstrap;
  5. regression [linked with Darwin’s evolution of species, albeit paradoxically, as Darwin claimed to have faith in nothing but the irrelevant Rule of Three, a challenging consequence of this theory being an unobserved increase in trait variability across generations] exposed by Darwin’s cousin Galton [with a detailed and exhilarating entry on the quincunx!] as conditional expectation, hence as a true Bayesian tool, the Bayesian approach being more specifically addressed in (on?) this pillar;
  6. design of experiments [re-enters Fisher, with his revolutionary vision of changing all factors in Latin square designs], with an fascinating insert on the 18th Century French Loterie,  which by 1811, i.e., during the Napoleonic wars, provided 4% of the national budget!;
  7. residuals which again relate to Darwin, Laplace, but also Yule’s first multiple regression (in 1899), Fisher’s introduction of parametric models, and Pearson’s χ² test. Plus Nightingale’s diagrams that never cease to impress me.

The conclusion of the book revisits the seven pillars to ascertain the nature and potential need for an eight pillar.  It is somewhat pessimistic, at least my reading of it was, as it cannot (and presumably does not want to) produce any direction about this new pillar and hence about the capacity of the field of statistics to handle in-coming challenges and competition. With some amount of exaggeration (!) I do hope the analogy of the seven pillars that raises in me the image of the beautiful ruins of a Greek temple atop a Sicilian hill, in the setting sun, with little known about its original purpose, remains a mere analogy and does not extend to predict the future of the field! By its very nature, this wonderful book is about foundations of Statistics and therefore much more set in the past and on past advances than on the present, but those foundations need to move, grow, and be nurtured if the field is not to become a field of ruins, a methodology of the past!

4 Responses to “The Seven Pillars of Statistical Wisdom [book review]”

  1. Dan Simpson Says:

    isn’t pillar one in danger of the ecological fallacy?

    • then it will crumble away, won’t it?! More seriously (only if you insist!), aren’t you criticising the reliance on a model, which may become part of the über-model…

  2. Alan Izenman Says:

    I would have included “classification” as a major pillar of statistics. You can attribute the introduction of that to Fisher, of course.

    • Thanks, Alan. I am not convinced on a personal basis that classification is a major advance! Unless written as a mixture model in which case likelihood may be sufficient…

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s