MCM17 snapshots

At MCM2017 today, Radu Craiu presented a talk on adaptive Metropolis-within-Gibbs, using a family of proposals for each component of the target and weighting them by jumping distance. And managing the adaptation from the selection rate rather than from the acceptance rate as we did in population Monte Carlo. I find the approach quite interesting in that adaptation and calibration of Metropolis-within-Gibbs is quite challenging due to the conditioning, i.e., the optimality of one scale is dependent on the other components. Some of the graphs produced by Radu during the talk showed a form of local adaptivity that seemed promising. This raised a question I could not ask for lack of time, namely that with a large enough collection of proposals, it is unclear why this approach provides a gain compared with particle, sequential or population Monte Carlo algorithms. Indeed, when there are many parallel proposals, clouds of particles can be generated from all proposals in proportion to their appeal and merged together in an importance manner, leading to an easier adaptation. As it went, the notion of local scaling also reflected in Mylène Bédard’s talk on another Metropolis-within-Gibbs study of optimal rates. The other interesting sessions I attended were the ones on importance sampling with stochastic gradient optimisation, organised by Ingmar Schuster, and on sequential Monte Carlo, with a divide-and-conquer resolution through trees by Lindsten et al. I had missed.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s