Bayesian synthetic likelihood

Leah Price, Chris Drovandi, Anthony Lee and David Nott published earlier this year a paper in JCGS on Bayesian synthetic likelihood, using Simon Wood’s synthetic likelihood as a substitute to the exact likelihood within a Bayesian approach. While not investigating the theoretical properties of this approximate approach, the paper compares it with ABC on some examples. In particular with respect to the number n of Monte Carlo replications used to approximate the mean and variance of the Gaussian synthetic likelihood.

Since this approach is most naturally associated with an MCMC implementation, it requires new simulations of the summary statistics at each iteration, without a clear possibility to involve parallel runs, in contrast to ABC. However in the final example of the paper, the authors reach values of n of several thousands, making use of multiple cores relevant, if requiring synchronicity and checks at every MCMC iteration.

The authors mention that “ABC can be viewed as a pseudo-marginal method”, but this has a limited appeal since the pseudo-marginal is a Monte Carlo substitute for the ABC target, not the original target. Similarly, there exists an unbiased estimator of the Gaussian density due to Ghurye and Olkin (1969) that allows to perceive the estimated synthetic likelihood version as a pseudo-marginal, once again wrt a target that differs from the original one. And the bias reappears under mis-specification, that is when the summary statistics are not normally distributed. It seems difficult to assess this normality or absence thereof in realistic situations.

“However, when the distribution of the summary statistic is highly irregular, the output of BSL cannot be trusted, while ABC represents a robust alternative in such cases.”

To make synthetic likelihood and ABC algorithms compatible, the authors chose a Normal kernel for ABC. Still, the equivalence is imperfect in that the covariance matrix need be chosen in the ABC case and is estimated in the synthetic one. I am also lost to the argument that the synthetic version is more efficient than ABC, in general (page 8). As for the examples, the first one uses a toy Poisson posterior with a single sufficient summary statistic, which is not very representative of complex situations where summary statistics are extremes or discrete. As acknowledged by the authors this is a case when the Normality assumption applies. For an integer support hidden process like the Ricker model, normality vanishes and the outcomes of ANC and synthetic likelihood differ, which makes it difficult to compare the inferential properties of both versions (rather than the acceptance rates), while using a 13-dimension statistic for estimating a 3-dimension parameter is not recommended for ABC, as discussed by Li and Fearnhead (2017). The same issue appears in the realistic cell motility example, with 145 summaries versus two parameters. (In the philogenies studied by DIYABC, the number of summary statistics is about the same but we now advocate a projection to the parameter dimension by the medium of random forests.)

Given the similarity between both approaches, I wonder at a confluence between them, where synthetic likelihood could maybe be used to devise PCA on the summary statistics and facilitate their projection on a space with much smaller dimensions. Or estimating the mean and variance functions in the synthetic likelihood towards producing directly simulations of the summary statistics.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s