improperties on an astronomical scale

As pointed out by Peter Coles on his blog, In the Dark, Hyungsuk Tak, Sujit Ghosh, and Justin Ellis just arXived a review of the unsafe use of improper priors in astronomy papers, 24 out of 75 having failed to establish that the corresponding posteriors are well-defined. And they exhibit such an instance (of impropriety) in a MNRAS paper by Pihajoki (2017), which is a complexification of Gelfand et al. (1990), also used by Jim Hobert in his thesis. (Even though the formal argument used to show the impropriety of the posterior in Pihajoki’s paper does not sound right since it considers divergence at a single value of a parameter β.) Besides repeating this warning about an issue that was rather quickly identified in the infancy of MCMC, if not in the very first publications on the Gibbs sampler, the paper seems to argue against using improper priors due to this potential danger, stating that instead proper priors that include all likely values and beyond are to be preferred. Which reminds me of the BUGS feature of using a N(0,10⁹) prior instead of the flat prior, missing the fact that “very large” variances do impact the resulting inference (if only for the issue of model comparison, remember Lindley-Jeffreys!). And are informative in that sense. However, it is obviously a good idea to advise checking for propriety (!) and using such alternatives may come as a safety button, providing a comparison benchmark to spot possible divergences in the resulting inference.

2 Responses to “improperties on an astronomical scale”

  1. Dan Simpson Says:

    I don’t think N(0,1e9) priors are a good implementation of “proper priors that include all likely values and beyond are to be preferred” unless you have a substantive reason to believe that values of 30k would routinely occur (in which case you may want to reconsider your scaling)

    • I evidently agree with you on that point, but the authors seem to believe they can come up with ways of scaling “large” the proper astronomical way.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s