## same simulation, different acceptance

**I**n doubly intractable settings, where the likelihood involves an intractable constant Z(θ), an auxiliary or pseudo- observation x is generated to incorporate strategically located densities in the acceptance probability towards cancelling out the Z(θ)’s. The funny thing is that Møller et al. (2005) and Murray et al. (2006) both use the same simulations in their auxiliary algorithms, namely θ’~q(θ|θ,y) and x’~f(x|θ’), but return different acceptance probabilities. The former use an artificial target on the pair (θ’,x’) [with a free conditional on x’] while the later uses a pseudo-marginal argument to estimate the missing constant Z(θ) by importance sampling as noticed by Everitt (2012). This apparent paradox is rather common to simulation in that several importance weights can often be constructed for the same importance function. But in the case of doubly intractable distributions, the first approach offers a surprisingly wide variability in the selection of the conditional on x’, which can be absolutely any density g(x|θ,y). And hence could be optimised for maximal acceptance rate. Or maximal effective sample size. In the original paper of Møller et al. (2005) a plug-in version f(x|θ) was suggested, with θ replaced with a crude estimate. This morning, when discussing both versions with Julien Stoehr, I realised that a geometric average of f(x|θ)’s could be used as well, since the intractable normalising constants would not be an issue [as opposed to an arithmetic or harmonic average]. I [idly] wonder if anything has been done in this direction…

## Leave a Reply