an interesting identity

Another interesting X validated question, another remembrance of past discussions on that issue. Discussions that took place in the Institut d’Astrophysique de Paris, nearby this painting of Laplace, when working on our cosmostats project. Namely the potential appeal of recycling multidimensional simulations by permuting the individual components in nearly independent settings. As shown by the variance decomposition in my answer, when opposing N iid pairs (X,Y) to the N combinations of √N simulations of X and √N simulations of Y, the comparison

\text{var} \hat{\mathfrak{h}}^2_N=\text{var} (\hat{\mathfrak{h}}^1_N)+\frac{mn(n-1)}{N^2}\,\text{var}^Y\left\{ \mathbb{E}^{X}\left\{\mathfrak{h}(X,Y)\right\}\right\}

+\frac{m(m-1)n}{N^2}\,\text{var}^X\left[\mathbb{E}^Y\left\{\mathfrak{h}(X,Y)\right\}\right]

unsurprisingly gives the upper hand to the iid sequence. A sort of converse to Rao-Blackwellisation…. Unless the production of N simulations gets much more costly when compared with the N function evaluations. No wonder we never see this proposal in Monte Carlo textbooks!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.