## double yolk priors

“To develop a “defendable and defensible” Bayesian learning model, we have to go beyond blindly ‘turning the crank’ based on a “go-as-you-like” [approximate guess] prior. A lackluster attitude towards prior modeling could lead to disastrous inference, impacting various fields from clinical drug development to presidential election forecasts. The real questions are: How can we uncover the blind spots of the conventional wisdom-based prior? How can we develop the science of prior model-building that combines both data and science [DS-prior] in a testable manner – a double-yolk Bayesian egg?”

I came through R bloggers on this presentation of a paper by Subhadeep Mukhopadhyay and Douglas Fletcher, Bayesian modelling via goodness of fit, that aims at solving all existing problems with classical Bayesian solutions, apparently! (With also apparently no awareness of David Spiegelhalter’s take on the matter.) As illustrated by both quotes, above and below:

“The two key issues of modern Bayesian statistics are: (i) establishing principled approach for distilling statistical prior that is consistent with the given data from an initial believable scientific prior; and (ii) development of a Bayes-frequentist consolidated data analysis work ow that is more effective than either of the two separately.”

(I wonder who else in this Universe would characterise “modern Bayesian statistics” in such a non-Bayesian way! And love the notion of distillation applied to priors!) The setup is actually one of empirical Bayes inference where repeated values of the parameter θ drawn from the prior are behind independent observations. Which is not the usual framework for a statistical analysis, where a single value of the parameter is supposed to hide behind the data, but most convenient for frequency based arguments behind empirical Bayes methods (which is the case here). The paper adopts a far-from-modern discourse on the “truth” of “the” prior… (Which is always conjugate in that Universe!) Instead of recognising the relativity of a statistical analysis based on a given prior.

When I tried to read the paper any further, I hit a wall as I could not understand the principle described therein. And how it “consolidates Bayes and frequentist, parametric and nonparametric, subjective and objective, quantile and information-theoretic philosophies.”. Presumably the lack of oxygen at the altitude of Chamonix…. Given an “initial guess” at the prior, g, a conjugate prior (in dimension one with an invertible cdf), a family of priors is created in what first looks like a form of non-parametric exponential tilting of g. But a closer look [at (2.1)] exposes the “family” as the tautological π(θ)=g(θ)x π(θ)/g(θ). The ratio is expanded into a Legendre polynomial series. Which use in Bayesian statistics dates a wee bit further back than indicated in the paper (see, e.g., Friedman, 1985; Diaconis, 1986). With the side issue that the resulting approximation does not integrate to one. Another side issue is that the coefficients of the Legendre truncated series are approximated by simulations from the prior [Step 3 of the Type II algorithm], rarely an efficient approach to the posterior.

This site uses Akismet to reduce spam. Learn how your comment data is processed.