Imperial postdoc in Bayesian nonparametrics
Here is another announcement for a post-doctoral position in London (UK) to work with Sarah Filippi. In the Department of Mathematics at Imperial College London. (More details on the site or in this document. Hopefully, the salary is sufficient for staying in London, if not in South Kensington!)
The post holder will work on developing a novel Bayesian Non-Parametric Test for Conditional Independence. This is at the core of modern causal discovery, itself of paramount importance throughout the sciences and in Machine Learning. As part of this project, the post holder will derive a Bayesian non-parametric testing procedure for conditional independence, scalable to high-dimensional conditioning variable. To ensure maximum impact and allow experimenters in different fields to easily apply this new methodology, the post holder will then create an open-source software package available on the R statistical programming platform. Doing so, the post holder will investigate applying this approach to real-world data from our established partners who have a track record of informing national and international bodies such as Public Health England and the World Health Organisation.
April 28, 2018 at 8:14 am
[…] article was first published on R – Xi'an's Og, and kindly contributed to […]