JSM 2018 [#3]

As I skipped day #2 for climbing, here I am on day #3, attending JSM 2018, with a [fully Canadian!] session on (conditional) copula (where Bruno Rémillard talked of copulas for mixed data, with unknown atoms, which sounded like an impossible target!), and another on four highlights from Bayesian Analysis, (the journal), with Maria Terres defending the (often ill-considered!) spectral approach within Bayesian analysis, modelling spectral densities (Fourier transforms of correlations functions, not probability densities), an advantage compared with MCAR modelling being the automated derivation of dependence graphs. While the spectral ghost did not completely dissipate for me, the use of DIC that she mentioned at the very end seems to call for investigation as I do not know of well-studied cases of complex dependent data with clearly specified DICs. Then Chris Drobandi was speaking of ABC being used for prior choice, an idea I vaguely remember seeing quite a while ago as a referee (or another paper!), paper in BA that I missed (and obviously did not referee). Using the same reference table works (for simple ABC) with different datasets but also different priors. I did not get first the notion that the reference table also produces an evaluation of the marginal distribution but indeed the entire simulation from prior x generative model gives a Monte Carlo representation of the marginal, hence the evidence at the observed data. Borrowing from Evans’ fringe Bayesian approach to model choice by prior predictive check for prior-model conflict. I remain sceptic or at least agnostic on the notion of using data to compare priors. And here on using ABC in tractable settings.

The afternoon session was [a mostly Australian] Advanced Bayesian computational methods,  with Robert Kohn on variational Bayes, with an interesting comparison of (exact) MCMC and (approximative) variational Bayes results for some species intensity and the remark that forecasting may be much more tolerant to the approximation than estimation. Making me wonder at a possibility of assessing VB on the marginals manageable by MCMC. Unless I miss a complexity such that the decomposition is impossible. And Antonietta Mira on estimating time-evolving networks estimated by ABC (which Anto first showed me in Orly airport, waiting for her plane!). With a possibility of a zero distance. Next talk by Nadja Klein on impicit copulas, linked with shrinkage properties I was unaware of, including the case of spike & slab copulas. Michael Smith also spoke of copulas with discrete margins, mentioning a version with continuous latent variables (as I thought could be done during the first session of the day), then moving to variational Bayes which sounds quite popular at JSM 2018. And David Gunawan made a presentation of a paper mixing pseudo-marginal Metropolis with particle Gibbs sampling, written with Chris Carter and Robert Kohn, making me wonder at their feature of using the white noise as an auxiliary variable in the estimation of the likelihood, which is quite clever but seems to get against the validation of the pseudo-marginal principle. (Warning: I have been known to be wrong!)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.