asymptotics of M³C²L

In a recent arXival, Blazej Miasojedow, Wojciech Niemiro and Wojciech Rejchel establish the convergence of a maximum likelihood estimator based on an MCMC approximation of the likelihood function. As in intractable normalising constants. The main result in the paper is a Central Limit theorem for the M³C²L estimator that incorporates an additional asymptotic variance term for the Monte Carlo error. Where both the sample size n and the number m of simulations go to infinity. Independently so. However, I do not fully perceive the relevance of using an MCMC chain to target an importance function [which is used in the approximation of the normalising constant or otherwise for the intractable likelihood], relative to picking an importance function h(.) that can be directly simulated.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.