coordinate sampler as a non-reversible Gibbs-like MCMC sampler

In connection with the talk I gave last July in Rennes for MCqMC 2018, I posted yesterday a preprint on arXiv of the work that my [soon to defend!] Dauphine PhD student Changye Wu and I did on an alternative PDMP. In this novel avatar of the zig-zag sampler,  a  non-reversible, continuous-time MCMC sampler, that we called the Coordinate Sampler, based on a piecewise deterministic Markov process. In addition to establishing the theoretical validity of this new sampling algorithm, we show in the same line as Deligiannidis et al.  (2018) that the Markov chain it induces exhibits geometrical ergodicity for distributions which tails decay at least as fast as an exponential distribution and at most as fast as a Gaussian distribution. A few numerical examples (a 2D banana shaped distribution à la Haario et al., 1999, strongly correlated high-dimensional normals, a log-Gaussian Cox process) highlight that our coordinate sampler is more efficient than the zig-zag sampler, in terms of effective sample size.Actually, we had sent this paper before the summer as a NIPS [2018] submission, but it did not make it through [the 4900 submissions this year and] the final review process, being eventually rated above the acceptance bar but not that above!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.