## Monte Carlo fusion

**H**ongsheng Dai, Murray Pollock (University of Warwick), and Gareth Roberts (University of Warwick) just arXived a paper we discussed together last year while I was at Warwick. Where *fusion* means bringing different parts of the target distribution

*f(x)∝f¹(x)f²(x)…*

together, once simulation from each part has been done. In the same spirit as in Scott et al. (2016) consensus Monte Carlo. Where for instance the components of the target cannot be computed simultaneously, either because of the size of the dataset, or because of privacy issues.The idea in this paper is to target an augmented density with the above marginal, using for each component of f, an auxiliary variable x¹,x²,…, and a target that is the product of the squared component, f¹(x¹)², f²(x²)², … by a transition density keeping f¹(.)²,f²(.)²,… invariant:

as for instance the transition density of a Langevin diffusion. The marginal of

as a function of y is then the targeted original product. Simulating from this new extended target can be achieved by rejection sampling. (Any impact of the number of auxiliary variables on the convergence?) The practical implementation actually implies using the path-space rejection sampling methods in the Read Paper of Beskos et al. (2006). (An extreme case of the algorithm is actually an (exact) ABC version where the simulations x¹,x²,… from all components have to be identical and equal to y. The opposite extreme is the consensus Monte Carlo Algorithm, which explains why this algorithm is not an efficient solution.) An alternative is based on an Ornstein-Uhlenbeck bridge. While the paper remains at a theoretical level with toy examples, I heard from the same sources that applications to more realistic problems and implementation on parallel processors is under way.

## Leave a Reply