## O’Bayes 19/2

**O**ne talk on Day 2 of O’Bayes 2019 was by Ryan Martin on data dependent priors (or “priors”). Which I have already discussed in this blog. Including the notion of a Gibbs posterior about quantities that “are not always defined through a model” [which is debatable if one sees it like part of a semi-parametric model]. Gibbs posterior that is built through a pseudo-likelihood constructed from the empirical risk, which reminds me of Bissiri, Holmes and Walker. Although requiring a prior on this quantity that is not part of a model. And is not necessarily a true posterior and not necessarily with the same concentration rate as a true posterior. Constructing a data-dependent distribution on the parameter does not necessarily mean an interesting inference and to keep up with the theme of the conference has no automated claim to [more] “objectivity”.

And after calling a prior both Beauty and The Beast!, Erlis Ruli argued about a “bias-reduction” prior where the prior is solution to a differential equation related with some cumulants, connected with an earlier work of David Firth (Warwick). An interesting conundrum is how to create an MCMC algorithm when the prior is that intractable, with a possible help from PDMP techniques like the Zig-Zag sampler.

While Peter Orbanz’ talk was centred on a central limit theorem under group invariance, further penalised by being the last of the (sun) day, Peter did a magnificent job of presenting the result and motivating each term. It reminded me of the work Jim Bondar was doing in Ottawa in the 1980’s on Haar measures for Bayesian inference. Including the notion of *amenability* [a term due to von Neumann] I had not met since then. (Neither have I met Jim since the last summer I spent in Carleton.) The CLT and associated LLN are remarkable in that the average is not over observations but over shifts of the same observation under elements of a sub-group of transformations. I wondered as well at the potential connection with the Read Paper of Kong et al. in 2003 on the use of group averaging for Monte Carlo integration [connection apart from the fact that both discussants, Michael Evans and myself, are present at this conference].

## Leave a Reply