a generalized representation of Bayesian inference

Jeremias Knoblauch, Jack Jewson and Theodoros Damoulas, all affiliated with Warwick (hence a potentially biased reading!), arXived a paper on loss-based Bayesian inference that Jack discussed with me on my last visit to Warwick. As I was somewhat scared by the 61 pages, of which the 8 first pages are in NeurIPS style. The authors argue for a decision-theoretic approach to Bayesian inference that involves a loss over distributions and a divergence from the prior. For instance, when using the log-score as the loss and the Kullback-Leibler divergence, the regular posterior emerges, as shown by Arnold Zellner. Variational inference also falls under this hat. The argument for this generalization is that any form of loss can be used and still returns a distribution that is used to assess uncertainty about the parameter (of interest). In the axioms they produce for justifying the derivation of the optimal procedure, including cases where the posterior is restricted to a certain class, one [Axiom 4] generalizes the likelihood principle. Given the freedom brought by this general framework, plenty of fringe Bayes methods like standard variational Bayes can be seen as solutions to such a decision problem. Others like EP do not. Of interest to me are the potentials for this formal framework to encompass misspecification and likelihood-free settings, as well as for assessing priors, which is always a fishy issue. (The authors mention in addition the capacity to build related specific design Bayesian deep networks, of which I know nothing.) The obvious reaction of mine is one of facing an abundance of wealth (!) but encompassing approximate Bayesian solutions within a Bayesian framework remains an exciting prospect.

One Response to “a generalized representation of Bayesian inference”

  1. Hi Xian,

    Regarding Axiom 4 (now Axiom II in the new version I believe), this paper: https://arxiv.org/abs/1906.10733 seems to prove a **Theorem** to that effect, might be worth a reading.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.