riddle of the seats

An arithmetic quick riddle from The Riddler:

If an integer n is a multiple of every integer between 1 and 200, except for two consecutive ones, find those consecutive integers.

Since the highest power of 2 less than 200 is 2⁷=128 and since 127 is a prime number, the number

2^6\times \prod_{i=0,i\ne 63}^{99} (2i+1)

should work in that it contains all odd integers but 127, and all even numbers, but 128. Of course a smaller number that avoids duplicates by only considering the 44 primes other than 127 and 2 to a power that keep them less than 200 is also valid. Which gives a number of the order of 1.037443 10⁸⁵.

One Response to “riddle of the seats”

  1. The same puzzle appeared as a question on math.stackexchange a few weeks later.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: