Le Monde puzzle [#1119]

A digit puzzle as Le weekly Monde current mathematical puzzle that sounds close to some earlier versions:

Perfect squares are pairs (a²,b²) with the same number of digits such that a²b² is itself a square. What is the pair providing a²b² less than 10⁶? Is there a solution with both integers enjoying ten digits?

The run of a brute force R code like

cek<-function(a,b){
  u<-trunc
  if ((n<-u(log(a^2,ba=10)))==u(log(b^2,ba=10))&
      (u(sqrt(a^2*10^(n+1)+b^2))^2==(a^2*10^(n+1)+b^2))) print(c(a,b))}

provides solutions to the first question.

[1] 2 3
[1] 4 9
[1] 12 20
[1] 15 25
[1] 18 30
[1] 49 99
[1] 126 155
[1] 154 300
[1] 159 281
[1] 177 277
[1] 228 100
[1] 252 310
[1] 285 125

with the (demonstrable) conclusion that the only pairs with an even number of digits are of the form (49…9²,9…9²), as for instance (49999²,99999²) with ten digits each.

2 Responses to “Le Monde puzzle [#1119]”

  1. […] article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here) […]

  2. […] by data_admin [This article was first published on R – Xi’an’s Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.