Le Monde puzzle [#1130]
A two-player game as Le weekly Monde current mathematical puzzle:
Abishag and Caleb fill in alternance a row of N boxes in a row by picking one then two then three &tc. consecutive boxes. When a player is unable to find enough consecutive boxes, the player has lost. Who is winning when N=29? When N=30?
Using a basic recursive search for the optimal strategy, with the status of the row and the number of required boxes as entries,
f<-function(b=!1:N,r=0){ for(i in 1:(N-r)){ if(p<-!max(b[j<-i+r:0])){ q=b;q[j]=1 if(p<-!f(q,r+1))break}} p}
returns Abishag as the winner for N=29 (as well as for N=1,2,7,…,13,19,…,29) and Caleb as the winner for N=30 (as well as for N=3,…,6,14,…,18). I am actually surprised that the recursion operates that deep, even though this means a √N depth for the recursion. While the code took too long to complete, the function operates for N=100. A side phenomenon is the apparent special case of N=47, which makes Abishag the looser, while N=46 and N=48 do not.This is an unusual pattern as otherwise (up to N=59), there are longer and longer stretches of adjacent wins and looses as N increases.
February 7, 2020 at 8:43 am
Actually, Abishag wins N = 3 by choosing the middle box.
February 7, 2020 at 8:15 am
[…] article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here) […]
February 7, 2020 at 2:18 am
[…] by data_admin [This article was first published on R – Xi’an’s Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page […]