## Mea Culpa

[A quote from Jaynes about improper priors that I had missed in his book, Probability Theory.]

For many years, the present writer was caught in this error just as badly as anybody else, because Bayesian calculations with improper priors continued to give just the reasonable and clearly correct results that common sense demanded. So warnings about improper priors went unheeded; just that psychological phenomenon. Finally, it was the marginalization paradox that forced recognition that we had only been lucky in our choice of problems. If we wish to consider an improper prior, the only correct way of doing it is to approach it as a well-defined limit of a sequence of proper priors. If the correct limiting procedure should yield an improper posterior pdf for some parameter α, then probability theory is telling us that the prior information and data are too meager to permit any inferences about α. Then the only remedy is to seek more data or more prior information; probability theory does not guarantee in advance that it will lead us to a useful answer to every conceivable question.Generally, the posterior pdf is better behaved than the prior because of the extra information in the likelihood function, and the correct limiting procedure yields a useful posterior pdf that is analytically simpler than any from a proper prior. The most universally useful results of Bayesian analysis obtained in the past are of this type, because they tended to be rather simple problems, in which the data were indeed so much more informative than the prior information that an improper prior gave a reasonable approximation – good enough for all practical purposes – to the strictly correct results (the two results agreed typically to six or more significant figures).

In the future, however, we cannot expect this to continue because the field is turning to more complex problems in which the prior information is essential and the solution is found by computer. In these cases it would be quite wrong to think of passing to an improper prior. That would lead usually to computer crashes; and, even if a crash is avoided, the conclusions would still be, almost always, quantitatively wrong. But, since likelihood functions are bounded, the analytical solution with proper priors is always guaranteed to converge properly to finite results; therefore it is always possible to write a computer program in such a way (avoid underflow, etc.) that it cannot crash when given proper priors. So, even if the criticisms of improper priors on grounds of marginalization were unjustified,it remains true that in the future we shall be concerned necessarily with proper priors.

### 3 Responses to “Mea Culpa”

1. Nevertheless, it is not uncommon to come across recent papers that adopt improper priors for (sometimes, very) complex models without checking posterior propriety.

• Correct! The more complex the harder it gets to check… Unless an MCMC algorithm starts diverging.

2. > But, since likelihood functions are bounded, the analytical solution with proper priors is always guaranteed to converge properly to finite results

Likelihood functions are bounded? Some of them, sure. I don’t think they all are.

This site uses Akismet to reduce spam. Learn how your comment data is processed.