## distortion estimates for approximate Bayesian inference

**A** few days ago, Hanwen Xing, Geoff Nichols and Jeong Eun Lee arXived a paper with the following title, to be presented at uai2020. Towards assessing the fit of the approximation for the actual posterior, given the available data. This covers of course ABC methods (which seems to be the primary focus of the paper) but also variational inference and synthetic likelihood versions. For a parameter of interest, the difference between exact and approximate marginal posterior distributions is see as a distortion map, *D = F o G⁻¹*, interpreted as in optimal transport and estimated by normalising flows. Even when the approximate distribution *G* is poorly estimated since *D* remains the cdf of *G(X)* when *X* is distributed from *F*. The marginal posterior approximate cdf *G* can be estimated by ABC or another approximate technique. The distortion function D is itself restricted to be a Beta cdf, with parameters estimated by a neural network (although based on which input is unclear to me, unless the weights in (5) are the neural weights). The assessment is based on the estimated distortion at the dataset, as a significant difference from the identity signal a poor fit for the approximation. Overall, the procedure seems implementable rather easily and while depending on calibrating choices (other than the number of layers in the neural network) a realistic version of the simulation-based diagnostic of Talts et al. (2018).

## Leave a Reply