## deterministic moves in Metropolis-Hastings

**A** curio on X validated where an hybrid Metropolis-Hastings scheme involves a deterministic transform, once in a while. The idea is to flip the sample from one mode, ν, towards the other mode, μ, with a symmetry of the kind

μ-α(x+μ) and ν-α(x+ν)

with α a positive coefficient. Or the reciprocal,

-μ+(μ-x)/α and -ν+(ν-x)/α

for… reversibility reasons. In that case, the acceptance probability is simply the Jacobian of the transform to the proposal, just as in reversible jump MCMC.

Why the (annoying) Jacobian? As explained in the above slides (and other references), the Jacobian is there to account for the change of measure induced by the transform.

Returning to the curio, the originator of the question had spotted some discrepancy between the target and the MCMC sample, as the moments did not fit well enough. For a similar toy model, a balanced Normal mixture, and an artificial flip consisting of

x’=±1-x/2 or x’=±2-2x

implemented by

u=runif(5) if(u[1]<.5){ mhp=mh[t-1]+2*u[2]-1 mh[t]=ifelse(u[3]<gnorm(mhp)/gnorm(mh[t-1]),mhp,mh[t-1]) }else{ dx=1+(u[4]<.5) mhp=ifelse(dx==1, ifelse(mh[t-1]<0,1,-1)-mh[t-1]/2, 2*ifelse(mh[t-1]<0,-1,1)-2*mh[t-1]) mh[t]=ifelse(u[5]<dx*gnorm(mhp)/gnorm(mh[t-1])/(3-dx),mhp,mh[t-1])

I could not spot said discrepancy beyond Monte Carlo variability.

July 10, 2020 at 1:12 pm

[…] article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page […]

July 10, 2020 at 12:42 pm

[…] by data_admin [This article was first published on R – Xi’an’s Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page […]