marginal likelihood with large amounts of missing data

In 2018, Panayiota Touloupou, research fellow at Warwick, and her co-authors published a paper in Bayesian analysis that somehow escaped my radar, despite standing in my first circle of topics of interest! They construct an importance sampling approach to the approximation of the marginal likelihood, the importance function being approximated from a preliminary MCMC run, and consider the special case when the sampling density (i.e., the likelihood) can be represented as the marginal of a joint density. While this demarginalisation perspective is rather usual, the central point they make is that it is more efficient to estimate the sampling density based on the auxiliary or latent variables than to consider the joint posterior distribution of parameter and latent in the importance sampler. This induces a considerable reduction in dimension and hence explains (in part) why the approach should prove more efficient. Even though the approximation itself is costly, at about 5 seconds per marginal likelihood. But a nice feature of the paper is to include the above graph that includes both computing time and variability for different methods (the blue range corresponding to the marginal importance solution, the red range to RJMCMC and the green range to Chib’s estimate). Note that bridge sampling does not appear on the picture but returns a variability that is similar to the proposed methodology.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.