## an infinite regress of hierarchical priors An interesting musing posted on X validated about the impact of perpetuating prior models on the parameters of closer priors till infinity. Using a hierarchy of exponential priors and an exponential sampling distribution. If the (temporary) top prior at level d is Exp(1), the marginal distribution of the exponential sample corresponds to a ratio of two independent products of Exp(1) random variables $X= \frac{\epsilon_{2\lfloor d/2 \rfloor}\cdots \epsilon_0}{\epsilon_{2\lfloor (d-1)/2 \rfloor+1}\cdots \epsilon_1}$

And both terms converge almost surely to zero with d (by Kakutani’s product martingale theorem). Thus ending up in an indeterminate ratio. Hierarchy has to stop somewhere! (Or, assuming an expectation of one everywhere, the variability at each level has to decrease fast enough.)

### 2 Responses to “an infinite regress of hierarchical priors”

1. coreyyanofsky Says:

This has been investigated in “Infinite hierarchies and prior distributions” by Gareth O. Roberts and Jeffrey S. Rosenthal, https://projecteuclid.org/euclid.bj/1080004760 .

• xi'an Says:

uh-oh, don’t tell them!!! (Thanks!)

This site uses Akismet to reduce spam. Learn how your comment data is processed.